Genetic diversity and the structure of linkage disequilibrium in the methylenetetrahydrofolate reductase locus View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-10-16

AUTHORS

E. A. Trifonova, M. G. Spiridonova, V. A. Stepanov

ABSTRACT

Investigation of linkage disequilibrium block architecture in human genome is modern, intensely investigated field of molecular genetics. In the present study, genetic differentiation and linkage disequilibrium pattern in the methylenetetrahydrofolate reductase (MTHFR) locus was examined in the populations of Russians, Tuvinians, and Northern and Southern Kyrgyzes. Methylenetetrahydrofolate reductase is the key enzyme of folate cycle, responsible for reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. Decreased enzymatic activity of this protein often caused by certain associations of MTHFR alleles results in the increased plasma homocysteine levels. In the population groups examined, genotype and allele frequencies at five polymorphic MTHFR loci: rs17037397, rs4846052, rs1801133, rs1801131, and rs1537516 were evaluated. Statistically significant genetic differences between the population group of Southern Kyrgyzes and the other groups, as well as between Russians and Tuvinians, were demonstrated. In the MTHFR gene from the population of Southern Kyrgyzes one block was revealed; in the populations of Russians, Tuvinians, and Northern Kyrgyzes two blocks were detected. Thus, the structure of linkage disequilibrium in the MTHFR locus demonstrated population-specific pattern. More... »

PAGES

1224-1232

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s102279540810013x

DOI

http://dx.doi.org/10.1134/s102279540810013x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046904835


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Medical Genetics, Russian Academy of Medical Sciences, 634050, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.466123.4", 
          "name": [
            "Institute for Medical Genetics, Russian Academy of Medical Sciences, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trifonova", 
        "givenName": "E. A.", 
        "id": "sg:person.01255016377.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255016377.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Medical Genetics, Russian Academy of Medical Sciences, 634050, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.466123.4", 
          "name": [
            "Institute for Medical Genetics, Russian Academy of Medical Sciences, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spiridonova", 
        "givenName": "M. G.", 
        "id": "sg:person.01215144770.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215144770.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Medical Genetics, Russian Academy of Medical Sciences, 634050, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.466123.4", 
          "name": [
            "Institute for Medical Genetics, Russian Academy of Medical Sciences, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stepanov", 
        "givenName": "V. A.", 
        "id": "sg:person.07631742401.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07631742401.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.2165/00066982-200005010-00013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069123317", 
          "https://doi.org/10.2165/00066982-200005010-00013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003359900838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049673973", 
          "https://doi.org/10.1007/s003359900838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011014033", 
          "https://doi.org/10.1038/ng1333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004749772", 
          "https://doi.org/10.1038/nrg1123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35075590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049252964", 
          "https://doi.org/10.1038/35075590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052471263", 
          "https://doi.org/10.1186/1471-2105-7-525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026787741", 
          "https://doi.org/10.1038/ng1001-229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0595-111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007583916", 
          "https://doi.org/10.1038/ng0595-111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028187903", 
          "https://doi.org/10.1038/ng1001-217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejhg.5200767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013039268", 
          "https://doi.org/10.1038/sj.ejhg.5200767"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-10-16", 
    "datePublishedReg": "2008-10-16", 
    "description": "Investigation of linkage disequilibrium block architecture in human genome is modern, intensely investigated field of molecular genetics. In the present study, genetic differentiation and linkage disequilibrium pattern in the methylenetetrahydrofolate reductase (MTHFR) locus was examined in the populations of Russians, Tuvinians, and Northern and Southern Kyrgyzes. Methylenetetrahydrofolate reductase is the key enzyme of folate cycle, responsible for reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. Decreased enzymatic activity of this protein often caused by certain associations of MTHFR alleles results in the increased plasma homocysteine levels. In the population groups examined, genotype and allele frequencies at five polymorphic MTHFR loci: rs17037397, rs4846052, rs1801133, rs1801131, and rs1537516 were evaluated. Statistically significant genetic differences between the population group of Southern Kyrgyzes and the other groups, as well as between Russians and Tuvinians, were demonstrated. In the MTHFR gene from the population of Southern Kyrgyzes one block was revealed; in the populations of Russians, Tuvinians, and Northern Kyrgyzes two blocks were detected. Thus, the structure of linkage disequilibrium in the MTHFR locus demonstrated population-specific pattern.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s102279540810013x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1319770", 
        "issn": [
          "1022-7954", 
          "1608-3369"
        ], 
        "name": "Russian Journal of Genetics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "keywords": [
      "populations of Russians", 
      "population-specific patterns", 
      "significant genetic differences", 
      "linkage disequilibrium", 
      "genetic differentiation", 
      "linkage disequilibrium patterns", 
      "genetic diversity", 
      "human genome", 
      "molecular genetics", 
      "allele results", 
      "key enzyme", 
      "genetic differences", 
      "loci", 
      "disequilibrium patterns", 
      "folate cycle", 
      "enzymatic activity", 
      "MTHFR locus", 
      "allele frequencies", 
      "Tuvinians", 
      "disequilibrium", 
      "genome", 
      "genes", 
      "genetics", 
      "reductase", 
      "protein", 
      "methylenetetrahydrofolate reductase", 
      "diversity", 
      "population", 
      "enzyme", 
      "differentiation", 
      "genotypes", 
      "MTHFR gene", 
      "patterns", 
      "present study", 
      "activity", 
      "certain associations", 
      "structure", 
      "cycle", 
      "population groups", 
      "rs1801133", 
      "levels", 
      "association", 
      "group", 
      "block", 
      "study", 
      "differences", 
      "architecture", 
      "results", 
      "reduction", 
      "rs1801131", 
      "investigation", 
      "frequency", 
      "Kyrgyz", 
      "field", 
      "plasma homocysteine levels", 
      "homocysteine levels", 
      "Russian", 
      "block architecture", 
      "linkage disequilibrium block architecture", 
      "disequilibrium block architecture", 
      "methylenetetrahydrofolate reductase (MTHFR) locus", 
      "reductase (MTHFR) locus", 
      "Southern Kyrgyzes", 
      "MTHFR alleles results", 
      "polymorphic MTHFR loci", 
      "rs17037397", 
      "rs4846052", 
      "rs1537516", 
      "Southern Kyrgyzes one block", 
      "Kyrgyzes one block", 
      "one block", 
      "Northern Kyrgyzes two blocks", 
      "Kyrgyzes two blocks", 
      "two blocks"
    ], 
    "name": "Genetic diversity and the structure of linkage disequilibrium in the methylenetetrahydrofolate reductase locus", 
    "pagination": "1224-1232", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046904835"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s102279540810013x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s102279540810013x", 
      "https://app.dimensions.ai/details/publication/pub.1046904835"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_470.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s102279540810013x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s102279540810013x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s102279540810013x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s102279540810013x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s102279540810013x'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      22 PREDICATES      109 URIs      91 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s102279540810013x schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nbcfe584f1ee74045a6c4388ad86a4f97
4 schema:citation sg:pub.10.1007/s003359900838
5 sg:pub.10.1038/35075590
6 sg:pub.10.1038/ng0595-111
7 sg:pub.10.1038/ng1001-217
8 sg:pub.10.1038/ng1001-229
9 sg:pub.10.1038/ng1333
10 sg:pub.10.1038/nrg1123
11 sg:pub.10.1038/sj.ejhg.5200767
12 sg:pub.10.1186/1471-2105-7-525
13 sg:pub.10.2165/00066982-200005010-00013
14 schema:datePublished 2008-10-16
15 schema:datePublishedReg 2008-10-16
16 schema:description Investigation of linkage disequilibrium block architecture in human genome is modern, intensely investigated field of molecular genetics. In the present study, genetic differentiation and linkage disequilibrium pattern in the methylenetetrahydrofolate reductase (MTHFR) locus was examined in the populations of Russians, Tuvinians, and Northern and Southern Kyrgyzes. Methylenetetrahydrofolate reductase is the key enzyme of folate cycle, responsible for reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. Decreased enzymatic activity of this protein often caused by certain associations of MTHFR alleles results in the increased plasma homocysteine levels. In the population groups examined, genotype and allele frequencies at five polymorphic MTHFR loci: rs17037397, rs4846052, rs1801133, rs1801131, and rs1537516 were evaluated. Statistically significant genetic differences between the population group of Southern Kyrgyzes and the other groups, as well as between Russians and Tuvinians, were demonstrated. In the MTHFR gene from the population of Southern Kyrgyzes one block was revealed; in the populations of Russians, Tuvinians, and Northern Kyrgyzes two blocks were detected. Thus, the structure of linkage disequilibrium in the MTHFR locus demonstrated population-specific pattern.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N1c6acb741e8241ca9c9c308b11103054
21 N4019753f4db54e88b2423a8af4e717d1
22 sg:journal.1319770
23 schema:keywords Kyrgyz
24 Kyrgyzes one block
25 Kyrgyzes two blocks
26 MTHFR alleles results
27 MTHFR gene
28 MTHFR locus
29 Northern Kyrgyzes two blocks
30 Russian
31 Southern Kyrgyzes
32 Southern Kyrgyzes one block
33 Tuvinians
34 activity
35 allele frequencies
36 allele results
37 architecture
38 association
39 block
40 block architecture
41 certain associations
42 cycle
43 differences
44 differentiation
45 disequilibrium
46 disequilibrium block architecture
47 disequilibrium patterns
48 diversity
49 enzymatic activity
50 enzyme
51 field
52 folate cycle
53 frequency
54 genes
55 genetic differences
56 genetic differentiation
57 genetic diversity
58 genetics
59 genome
60 genotypes
61 group
62 homocysteine levels
63 human genome
64 investigation
65 key enzyme
66 levels
67 linkage disequilibrium
68 linkage disequilibrium block architecture
69 linkage disequilibrium patterns
70 loci
71 methylenetetrahydrofolate reductase
72 methylenetetrahydrofolate reductase (MTHFR) locus
73 molecular genetics
74 one block
75 patterns
76 plasma homocysteine levels
77 polymorphic MTHFR loci
78 population
79 population groups
80 population-specific patterns
81 populations of Russians
82 present study
83 protein
84 reductase
85 reductase (MTHFR) locus
86 reduction
87 results
88 rs1537516
89 rs17037397
90 rs1801131
91 rs1801133
92 rs4846052
93 significant genetic differences
94 structure
95 study
96 two blocks
97 schema:name Genetic diversity and the structure of linkage disequilibrium in the methylenetetrahydrofolate reductase locus
98 schema:pagination 1224-1232
99 schema:productId Ne0dd4f2d7df24e42a352d2fcdd6a7a8a
100 Ne876308c77cc4f509feca49ec688ca89
101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046904835
102 https://doi.org/10.1134/s102279540810013x
103 schema:sdDatePublished 2022-01-01T18:19
104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
105 schema:sdPublisher N33e0c56789fb4f5188070a36d5d2edc9
106 schema:url https://doi.org/10.1134/s102279540810013x
107 sgo:license sg:explorer/license/
108 sgo:sdDataset articles
109 rdf:type schema:ScholarlyArticle
110 N15f45b72b32c43dbb9c518d0a0ffa3ba rdf:first sg:person.07631742401.77
111 rdf:rest rdf:nil
112 N1c6acb741e8241ca9c9c308b11103054 schema:volumeNumber 44
113 rdf:type schema:PublicationVolume
114 N33e0c56789fb4f5188070a36d5d2edc9 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 N4019753f4db54e88b2423a8af4e717d1 schema:issueNumber 10
117 rdf:type schema:PublicationIssue
118 Nb1d1f356ea18429ebc3b363074e4b67e rdf:first sg:person.01215144770.42
119 rdf:rest N15f45b72b32c43dbb9c518d0a0ffa3ba
120 Nbcfe584f1ee74045a6c4388ad86a4f97 rdf:first sg:person.01255016377.67
121 rdf:rest Nb1d1f356ea18429ebc3b363074e4b67e
122 Ne0dd4f2d7df24e42a352d2fcdd6a7a8a schema:name dimensions_id
123 schema:value pub.1046904835
124 rdf:type schema:PropertyValue
125 Ne876308c77cc4f509feca49ec688ca89 schema:name doi
126 schema:value 10.1134/s102279540810013x
127 rdf:type schema:PropertyValue
128 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
129 schema:name Biological Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
132 schema:name Genetics
133 rdf:type schema:DefinedTerm
134 sg:journal.1319770 schema:issn 1022-7954
135 1608-3369
136 schema:name Russian Journal of Genetics
137 schema:publisher Pleiades Publishing
138 rdf:type schema:Periodical
139 sg:person.01215144770.42 schema:affiliation grid-institutes:grid.466123.4
140 schema:familyName Spiridonova
141 schema:givenName M. G.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215144770.42
143 rdf:type schema:Person
144 sg:person.01255016377.67 schema:affiliation grid-institutes:grid.466123.4
145 schema:familyName Trifonova
146 schema:givenName E. A.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255016377.67
148 rdf:type schema:Person
149 sg:person.07631742401.77 schema:affiliation grid-institutes:grid.466123.4
150 schema:familyName Stepanov
151 schema:givenName V. A.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07631742401.77
153 rdf:type schema:Person
154 sg:pub.10.1007/s003359900838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049673973
155 https://doi.org/10.1007/s003359900838
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/35075590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049252964
158 https://doi.org/10.1038/35075590
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/ng0595-111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007583916
161 https://doi.org/10.1038/ng0595-111
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/ng1001-217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028187903
164 https://doi.org/10.1038/ng1001-217
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/ng1001-229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026787741
167 https://doi.org/10.1038/ng1001-229
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/ng1333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011014033
170 https://doi.org/10.1038/ng1333
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nrg1123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004749772
173 https://doi.org/10.1038/nrg1123
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/sj.ejhg.5200767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013039268
176 https://doi.org/10.1038/sj.ejhg.5200767
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/1471-2105-7-525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052471263
179 https://doi.org/10.1186/1471-2105-7-525
180 rdf:type schema:CreativeWork
181 sg:pub.10.2165/00066982-200005010-00013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069123317
182 https://doi.org/10.2165/00066982-200005010-00013
183 rdf:type schema:CreativeWork
184 grid-institutes:grid.466123.4 schema:alternateName Institute for Medical Genetics, Russian Academy of Medical Sciences, 634050, Tomsk, Russia
185 schema:name Institute for Medical Genetics, Russian Academy of Medical Sciences, 634050, Tomsk, Russia
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...