Effect of crosslink density on the properties of monolithic polymer matrices: Reversed-phase gas-chromatography study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-10

AUTHORS

A. Yu. Kanat’eva, A. A. Korolev, V. E. Shiryaeva, T. P. Popova, A. A. Kurganov

ABSTRACT

Monolithic polymer matrices of different natures and different degrees of crosslinking have been synthesized in capillaries with an inner diameter of 100 µm. The properties of the monolithic matrices are characterized by reversed-phase gas chromatography. Solubility coefficient S, Flory-Huggins parameter gC12∞, and reduced Flory-Huggins parameter gC12∞ are evaluated. For all tested sorbates, the values of S depend on the degree of crosslinking of the polymer, which is characterized by parameter gC12∞. In the case of all monolithic polymer matrices under study, the logarithm of the solubility coefficient plotted as a function of the squared critical temperature of sorbate is described by a straight line, a circumstance that is likewise typical of linear polymers. Parameter D/df2, which characterizes the rate of diffusion of low-molecular-mass compounds in the monolithic matrix, is calculated. For both polar and nonpolar polymers, the dependence of D/df2 on the degree of crosslinking follows an extremum pattern. More... »

PAGES

1060

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965545x09100022

DOI

http://dx.doi.org/10.1134/s0965545x09100022

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001509577


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanat\u2019eva", 
        "givenName": "A. Yu.", 
        "id": "sg:person.010657112101.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010657112101.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korolev", 
        "givenName": "A. A.", 
        "id": "sg:person.0761776377.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761776377.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiryaeva", 
        "givenName": "V. E.", 
        "id": "sg:person.01055573762.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055573762.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popova", 
        "givenName": "T. P.", 
        "id": "sg:person.01123707162.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurganov", 
        "givenName": "A. A.", 
        "id": "sg:person.01240135562.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240135562.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0965545x06080025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000213924", 
          "https://doi.org/10.1134/s0965545x06080025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1521-4168(20000101)23:1<93::aid-jhrc93>3.0.co;2-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002542926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1521-4168(20000101)23:1<93::aid-jhrc93>3.0.co;2-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002542926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(90)90020-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004397386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(90)90020-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004397386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/polyeng.2007.27.2.129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008608592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aic.690150117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010863008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1246/bcsj.51.75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013119251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2008.05.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025690571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2007.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026035470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymer.2005.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040271150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(01)01582-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048101194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2008.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051009434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef030062l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055475601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef030062l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055475601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma960920v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056206352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma960920v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056206352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma9817222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056209332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma9817222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056209332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1723792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057790666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10601329508019182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058367475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077283850", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-10", 
    "datePublishedReg": "2009-10-01", 
    "description": "Monolithic polymer matrices of different natures and different degrees of crosslinking have been synthesized in capillaries with an inner diameter of 100 \u00b5m. The properties of the monolithic matrices are characterized by reversed-phase gas chromatography. Solubility coefficient S, Flory-Huggins parameter gC12\u221e, and reduced Flory-Huggins parameter gC12\u221e are evaluated. For all tested sorbates, the values of S depend on the degree of crosslinking of the polymer, which is characterized by parameter gC12\u221e. In the case of all monolithic polymer matrices under study, the logarithm of the solubility coefficient plotted as a function of the squared critical temperature of sorbate is described by a straight line, a circumstance that is likewise typical of linear polymers. Parameter D/df2, which characterizes the rate of diffusion of low-molecular-mass compounds in the monolithic matrix, is calculated. For both polar and nonpolar polymers, the dependence of D/df2 on the degree of crosslinking follows an extremum pattern.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0965545x09100022", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043515", 
        "issn": [
          "1757-1820", 
          "1555-6107"
        ], 
        "name": "Polymer Science, Series A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "Effect of crosslink density on the properties of monolithic polymer matrices: Reversed-phase gas-chromatography study", 
    "pagination": "1060", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "073079348f18e968d10d1cf1a60128d847e74f6cc9b1f54d9ae392857a1b143b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965545x09100022"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001509577"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965545x09100022", 
      "https://app.dimensions.ai/details/publication/pub.1001509577"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99818_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0965545X09100022"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965545x09100022'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965545x09100022'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965545x09100022'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965545x09100022'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965545x09100022 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 schema:author N511c9ccf6816467190ced7bc4aa2e705
4 schema:citation sg:pub.10.1134/s0965545x06080025
5 https://app.dimensions.ai/details/publication/pub.1077283850
6 https://doi.org/10.1002/(sici)1521-4168(20000101)23:1<93::aid-jhrc93>3.0.co;2-2
7 https://doi.org/10.1002/aic.690150117
8 https://doi.org/10.1016/0032-3861(90)90020-y
9 https://doi.org/10.1016/j.chroma.2007.02.004
10 https://doi.org/10.1016/j.chroma.2008.05.009
11 https://doi.org/10.1016/j.chroma.2008.05.073
12 https://doi.org/10.1016/j.polymer.2005.11.005
13 https://doi.org/10.1016/s0021-9673(01)01582-5
14 https://doi.org/10.1021/ef030062l
15 https://doi.org/10.1021/ma960920v
16 https://doi.org/10.1021/ma9817222
17 https://doi.org/10.1063/1.1723792
18 https://doi.org/10.1080/10601329508019182
19 https://doi.org/10.1246/bcsj.51.75
20 https://doi.org/10.1515/polyeng.2007.27.2.129
21 schema:datePublished 2009-10
22 schema:datePublishedReg 2009-10-01
23 schema:description Monolithic polymer matrices of different natures and different degrees of crosslinking have been synthesized in capillaries with an inner diameter of 100 µm. The properties of the monolithic matrices are characterized by reversed-phase gas chromatography. Solubility coefficient S, Flory-Huggins parameter gC12∞, and reduced Flory-Huggins parameter gC12∞ are evaluated. For all tested sorbates, the values of S depend on the degree of crosslinking of the polymer, which is characterized by parameter gC12∞. In the case of all monolithic polymer matrices under study, the logarithm of the solubility coefficient plotted as a function of the squared critical temperature of sorbate is described by a straight line, a circumstance that is likewise typical of linear polymers. Parameter D/df2, which characterizes the rate of diffusion of low-molecular-mass compounds in the monolithic matrix, is calculated. For both polar and nonpolar polymers, the dependence of D/df2 on the degree of crosslinking follows an extremum pattern.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf Nbd7766a74b2947eeb149007c6403241b
28 Nea28e5c1757140ed9aa3b49f588b5773
29 sg:journal.1043515
30 schema:name Effect of crosslink density on the properties of monolithic polymer matrices: Reversed-phase gas-chromatography study
31 schema:pagination 1060
32 schema:productId N5e0e38cbe92b4315a3b9a37249d65412
33 Nb4525d1e9be64602ae92d16071cf8e9d
34 Ne3bd24d42d5f4a6eb26afe10b8fae44b
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001509577
36 https://doi.org/10.1134/s0965545x09100022
37 schema:sdDatePublished 2019-04-11T09:34
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N02fcd1985d1944d3a81a3c1d9996cc82
40 schema:url http://link.springer.com/10.1134/S0965545X09100022
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N02fcd1985d1944d3a81a3c1d9996cc82 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N347748dd8bae4babbab6cf9d58e7fbc1 rdf:first sg:person.01123707162.15
47 rdf:rest N937bc061e36d410fa9ae4131e7d31f65
48 N511c9ccf6816467190ced7bc4aa2e705 rdf:first sg:person.010657112101.27
49 rdf:rest N5bab6041b9454ed3a1d539dc76aae3a1
50 N5bab6041b9454ed3a1d539dc76aae3a1 rdf:first sg:person.0761776377.67
51 rdf:rest Nab27e422df9b467cb7a2aaaa4d2f3a6d
52 N5e0e38cbe92b4315a3b9a37249d65412 schema:name readcube_id
53 schema:value 073079348f18e968d10d1cf1a60128d847e74f6cc9b1f54d9ae392857a1b143b
54 rdf:type schema:PropertyValue
55 N937bc061e36d410fa9ae4131e7d31f65 rdf:first sg:person.01240135562.44
56 rdf:rest rdf:nil
57 Nab27e422df9b467cb7a2aaaa4d2f3a6d rdf:first sg:person.01055573762.38
58 rdf:rest N347748dd8bae4babbab6cf9d58e7fbc1
59 Nb4525d1e9be64602ae92d16071cf8e9d schema:name doi
60 schema:value 10.1134/s0965545x09100022
61 rdf:type schema:PropertyValue
62 Nbd7766a74b2947eeb149007c6403241b schema:issueNumber 10
63 rdf:type schema:PublicationIssue
64 Ne3bd24d42d5f4a6eb26afe10b8fae44b schema:name dimensions_id
65 schema:value pub.1001509577
66 rdf:type schema:PropertyValue
67 Nea28e5c1757140ed9aa3b49f588b5773 schema:volumeNumber 51
68 rdf:type schema:PublicationVolume
69 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
70 schema:name Chemical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
73 schema:name Macromolecular and Materials Chemistry
74 rdf:type schema:DefinedTerm
75 sg:journal.1043515 schema:issn 1555-6107
76 1757-1820
77 schema:name Polymer Science, Series A
78 rdf:type schema:Periodical
79 sg:person.01055573762.38 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
80 schema:familyName Shiryaeva
81 schema:givenName V. E.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055573762.38
83 rdf:type schema:Person
84 sg:person.010657112101.27 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
85 schema:familyName Kanat’eva
86 schema:givenName A. Yu.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010657112101.27
88 rdf:type schema:Person
89 sg:person.01123707162.15 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
90 schema:familyName Popova
91 schema:givenName T. P.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15
93 rdf:type schema:Person
94 sg:person.01240135562.44 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
95 schema:familyName Kurganov
96 schema:givenName A. A.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240135562.44
98 rdf:type schema:Person
99 sg:person.0761776377.67 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
100 schema:familyName Korolev
101 schema:givenName A. A.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761776377.67
103 rdf:type schema:Person
104 sg:pub.10.1134/s0965545x06080025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000213924
105 https://doi.org/10.1134/s0965545x06080025
106 rdf:type schema:CreativeWork
107 https://app.dimensions.ai/details/publication/pub.1077283850 schema:CreativeWork
108 https://doi.org/10.1002/(sici)1521-4168(20000101)23:1<93::aid-jhrc93>3.0.co;2-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002542926
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/aic.690150117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010863008
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0032-3861(90)90020-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1004397386
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.chroma.2007.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026035470
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.chroma.2008.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051009434
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.chroma.2008.05.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025690571
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.polymer.2005.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040271150
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0021-9673(01)01582-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048101194
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1021/ef030062l schema:sameAs https://app.dimensions.ai/details/publication/pub.1055475601
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1021/ma960920v schema:sameAs https://app.dimensions.ai/details/publication/pub.1056206352
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1021/ma9817222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056209332
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1063/1.1723792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057790666
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1080/10601329508019182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058367475
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1246/bcsj.51.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013119251
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1515/polyeng.2007.27.2.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008608592
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
139 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...