Ontology type: schema:ScholarlyArticle
2007-03
AUTHORSI. A. Chernov, G. F. Novikov, G. I. Dzhardimalieva, A. D. Pomogailo
ABSTRACTIn situ dielectric spectroscopy at frequencies ranging from 1 to 105 Hz was used to study chemical transformations during the heating of cobalt(II) and nickel(II) acrylates from −160 to +400°C. On the basis of analysis of the evolution of dielectric relaxation time spectra, processes that correspond to three macroscopic stages in different temperature intervals were distinguished: dehydration, solid-state thermal polymerization, and decarboxylation of metallopolymers. These processes lead to the formation of a polymer matrix that stabilizes nanosized metal or metal oxide phases. In the case of cobalt acrylate, the crosslinking step occurs in a temperature interval other than that of polymerization. It was found that electric conductivity varies over six orders of magnitude upon the formation of the nanosized metal phase. More... »
PAGES267-274
http://scigraph.springernature.com/pub.10.1134/s0965545x07030066
DOIhttp://dx.doi.org/10.1134/s0965545x07030066
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1038841414
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Akademika Semenova 1, 142432, Chernogolovka, Moscow oblast, Russia",
"id": "http://www.grid.ac/institutes/grid.418949.9",
"name": [
"Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Akademika Semenova 1, 142432, Chernogolovka, Moscow oblast, Russia"
],
"type": "Organization"
},
"familyName": "Chernov",
"givenName": "I. A.",
"id": "sg:person.010442146337.19",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010442146337.19"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Akademika Semenova 1, 142432, Chernogolovka, Moscow oblast, Russia",
"id": "http://www.grid.ac/institutes/grid.418949.9",
"name": [
"Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Akademika Semenova 1, 142432, Chernogolovka, Moscow oblast, Russia"
],
"type": "Organization"
},
"familyName": "Novikov",
"givenName": "G. F.",
"id": "sg:person.010034007431.19",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010034007431.19"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Akademika Semenova 1, 142432, Chernogolovka, Moscow oblast, Russia",
"id": "http://www.grid.ac/institutes/grid.418949.9",
"name": [
"Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Akademika Semenova 1, 142432, Chernogolovka, Moscow oblast, Russia"
],
"type": "Organization"
},
"familyName": "Dzhardimalieva",
"givenName": "G. I.",
"id": "sg:person.010475400761.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010475400761.64"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Akademika Semenova 1, 142432, Chernogolovka, Moscow oblast, Russia",
"id": "http://www.grid.ac/institutes/grid.418949.9",
"name": [
"Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Akademika Semenova 1, 142432, Chernogolovka, Moscow oblast, Russia"
],
"type": "Organization"
},
"familyName": "Pomogailo",
"givenName": "A. D.",
"id": "sg:person.016403071561.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016403071561.84"
],
"type": "Person"
}
],
"datePublished": "2007-03",
"datePublishedReg": "2007-03-01",
"description": "In situ dielectric spectroscopy at frequencies ranging from 1 to 105 Hz was used to study chemical transformations during the heating of cobalt(II) and nickel(II) acrylates from \u2212160 to +400\u00b0C. On the basis of analysis of the evolution of dielectric relaxation time spectra, processes that correspond to three macroscopic stages in different temperature intervals were distinguished: dehydration, solid-state thermal polymerization, and decarboxylation of metallopolymers. These processes lead to the formation of a polymer matrix that stabilizes nanosized metal or metal oxide phases. In the case of cobalt acrylate, the crosslinking step occurs in a temperature interval other than that of polymerization. It was found that electric conductivity varies over six orders of magnitude upon the formation of the nanosized metal phase.",
"genre": "article",
"id": "sg:pub.10.1134/s0965545x07030066",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1043515",
"issn": [
"1757-1820",
"1555-6107"
],
"name": "Polymer Science, Series A",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "49"
}
],
"keywords": [
"thermal polymerization",
"solid-state thermal polymerization",
"metal oxide phases",
"situ dielectric spectroscopy",
"chemical transformations",
"cobalt acrylate",
"polymer matrix",
"dielectric spectroscopy",
"polymerization",
"acrylate",
"oxide phases",
"metal phase",
"dielectric measurements",
"situ dielectric measurements",
"relaxation time spectrum",
"temperature interval",
"electric conductivity",
"different temperature intervals",
"orders of magnitude",
"metallopolymers",
"spectroscopy",
"formation",
"decarboxylation",
"metals",
"phase",
"conductivity",
"macroscopic stages",
"spectra",
"time spectrum",
"dehydration",
"heating",
"basis of analysis",
"process",
"Hz",
"matrix",
"step",
"measurements",
"transformation",
"magnitude",
"frequency",
"order",
"basis",
"evolution",
"analysis",
"use",
"stage",
"interval",
"cases"
],
"name": "Thermal polymerization of cobalt(II) and nickel(II) acrylates: Use of in situ dielectric measurements",
"pagination": "267-274",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1038841414"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s0965545x07030066"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s0965545x07030066",
"https://app.dimensions.ai/details/publication/pub.1038841414"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:24",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_444.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s0965545x07030066"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965545x07030066'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965545x07030066'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965545x07030066'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965545x07030066'
This table displays all metadata directly associated to this object as RDF triples.
127 TRIPLES
21 PREDICATES
74 URIs
66 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s0965545x07030066 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | schema:author | N7c206477cc8048c5a81ffa4a2c8041b2 |
4 | ″ | schema:datePublished | 2007-03 |
5 | ″ | schema:datePublishedReg | 2007-03-01 |
6 | ″ | schema:description | In situ dielectric spectroscopy at frequencies ranging from 1 to 105 Hz was used to study chemical transformations during the heating of cobalt(II) and nickel(II) acrylates from −160 to +400°C. On the basis of analysis of the evolution of dielectric relaxation time spectra, processes that correspond to three macroscopic stages in different temperature intervals were distinguished: dehydration, solid-state thermal polymerization, and decarboxylation of metallopolymers. These processes lead to the formation of a polymer matrix that stabilizes nanosized metal or metal oxide phases. In the case of cobalt acrylate, the crosslinking step occurs in a temperature interval other than that of polymerization. It was found that electric conductivity varies over six orders of magnitude upon the formation of the nanosized metal phase. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N795ac3e9afcf4c6980a57fbaa548ff2c |
11 | ″ | ″ | N8d48b9cf534640878e1abd1f9344ac55 |
12 | ″ | ″ | sg:journal.1043515 |
13 | ″ | schema:keywords | Hz |
14 | ″ | ″ | acrylate |
15 | ″ | ″ | analysis |
16 | ″ | ″ | basis |
17 | ″ | ″ | basis of analysis |
18 | ″ | ″ | cases |
19 | ″ | ″ | chemical transformations |
20 | ″ | ″ | cobalt acrylate |
21 | ″ | ″ | conductivity |
22 | ″ | ″ | decarboxylation |
23 | ″ | ″ | dehydration |
24 | ″ | ″ | dielectric measurements |
25 | ″ | ″ | dielectric spectroscopy |
26 | ″ | ″ | different temperature intervals |
27 | ″ | ″ | electric conductivity |
28 | ″ | ″ | evolution |
29 | ″ | ″ | formation |
30 | ″ | ″ | frequency |
31 | ″ | ″ | heating |
32 | ″ | ″ | interval |
33 | ″ | ″ | macroscopic stages |
34 | ″ | ″ | magnitude |
35 | ″ | ″ | matrix |
36 | ″ | ″ | measurements |
37 | ″ | ″ | metal oxide phases |
38 | ″ | ″ | metal phase |
39 | ″ | ″ | metallopolymers |
40 | ″ | ″ | metals |
41 | ″ | ″ | order |
42 | ″ | ″ | orders of magnitude |
43 | ″ | ″ | oxide phases |
44 | ″ | ″ | phase |
45 | ″ | ″ | polymer matrix |
46 | ″ | ″ | polymerization |
47 | ″ | ″ | process |
48 | ″ | ″ | relaxation time spectrum |
49 | ″ | ″ | situ dielectric measurements |
50 | ″ | ″ | situ dielectric spectroscopy |
51 | ″ | ″ | solid-state thermal polymerization |
52 | ″ | ″ | spectra |
53 | ″ | ″ | spectroscopy |
54 | ″ | ″ | stage |
55 | ″ | ″ | step |
56 | ″ | ″ | temperature interval |
57 | ″ | ″ | thermal polymerization |
58 | ″ | ″ | time spectrum |
59 | ″ | ″ | transformation |
60 | ″ | ″ | use |
61 | ″ | schema:name | Thermal polymerization of cobalt(II) and nickel(II) acrylates: Use of in situ dielectric measurements |
62 | ″ | schema:pagination | 267-274 |
63 | ″ | schema:productId | N7832ad1a8d9a47969bb8f229405205e4 |
64 | ″ | ″ | Nb63b7c5dc62347d98d8ddd490845b156 |
65 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038841414 |
66 | ″ | ″ | https://doi.org/10.1134/s0965545x07030066 |
67 | ″ | schema:sdDatePublished | 2022-05-20T07:24 |
68 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
69 | ″ | schema:sdPublisher | N2a35018a1d044fc19ba35e98979904d1 |
70 | ″ | schema:url | https://doi.org/10.1134/s0965545x07030066 |
71 | ″ | sgo:license | sg:explorer/license/ |
72 | ″ | sgo:sdDataset | articles |
73 | ″ | rdf:type | schema:ScholarlyArticle |
74 | N2a35018a1d044fc19ba35e98979904d1 | schema:name | Springer Nature - SN SciGraph project |
75 | ″ | rdf:type | schema:Organization |
76 | N5ba35f7c1cd745c0895d410f79e9ea51 | rdf:first | sg:person.010034007431.19 |
77 | ″ | rdf:rest | Nb3c0524d00324f72a78e0fa69a24e6c6 |
78 | N7832ad1a8d9a47969bb8f229405205e4 | schema:name | doi |
79 | ″ | schema:value | 10.1134/s0965545x07030066 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | N795ac3e9afcf4c6980a57fbaa548ff2c | schema:issueNumber | 3 |
82 | ″ | rdf:type | schema:PublicationIssue |
83 | N7c206477cc8048c5a81ffa4a2c8041b2 | rdf:first | sg:person.010442146337.19 |
84 | ″ | rdf:rest | N5ba35f7c1cd745c0895d410f79e9ea51 |
85 | N8d48b9cf534640878e1abd1f9344ac55 | schema:volumeNumber | 49 |
86 | ″ | rdf:type | schema:PublicationVolume |
87 | Nb3c0524d00324f72a78e0fa69a24e6c6 | rdf:first | sg:person.010475400761.64 |
88 | ″ | rdf:rest | Nba9af1c6ddbf4fe5bf0f3580470eab19 |
89 | Nb63b7c5dc62347d98d8ddd490845b156 | schema:name | dimensions_id |
90 | ″ | schema:value | pub.1038841414 |
91 | ″ | rdf:type | schema:PropertyValue |
92 | Nba9af1c6ddbf4fe5bf0f3580470eab19 | rdf:first | sg:person.016403071561.84 |
93 | ″ | rdf:rest | rdf:nil |
94 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
95 | ″ | schema:name | Chemical Sciences |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
98 | ″ | schema:name | Physical Chemistry (incl. Structural) |
99 | ″ | rdf:type | schema:DefinedTerm |
100 | sg:journal.1043515 | schema:issn | 1555-6107 |
101 | ″ | ″ | 1757-1820 |
102 | ″ | schema:name | Polymer Science, Series A |
103 | ″ | schema:publisher | Pleiades Publishing |
104 | ″ | rdf:type | schema:Periodical |
105 | sg:person.010034007431.19 | schema:affiliation | grid-institutes:grid.418949.9 |
106 | ″ | schema:familyName | Novikov |
107 | ″ | schema:givenName | G. F. |
108 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010034007431.19 |
109 | ″ | rdf:type | schema:Person |
110 | sg:person.010442146337.19 | schema:affiliation | grid-institutes:grid.418949.9 |
111 | ″ | schema:familyName | Chernov |
112 | ″ | schema:givenName | I. A. |
113 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010442146337.19 |
114 | ″ | rdf:type | schema:Person |
115 | sg:person.010475400761.64 | schema:affiliation | grid-institutes:grid.418949.9 |
116 | ″ | schema:familyName | Dzhardimalieva |
117 | ″ | schema:givenName | G. I. |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010475400761.64 |
119 | ″ | rdf:type | schema:Person |
120 | sg:person.016403071561.84 | schema:affiliation | grid-institutes:grid.418949.9 |
121 | ″ | schema:familyName | Pomogailo |
122 | ″ | schema:givenName | A. D. |
123 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016403071561.84 |
124 | ″ | rdf:type | schema:Person |
125 | grid-institutes:grid.418949.9 | schema:alternateName | Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Akademika Semenova 1, 142432, Chernogolovka, Moscow oblast, Russia |
126 | ″ | schema:name | Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Akademika Semenova 1, 142432, Chernogolovka, Moscow oblast, Russia |
127 | ″ | rdf:type | schema:Organization |