Sulfidation of a Dispersed Molybdenum Catalyst with Hydrogen Sulfide Formed from Hydroconversion of Petroleum Feedstock View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-10-19

AUTHORS

L. A. Zekel, A. M. Gyulmaliev, A. E. Batov, M. Ya. Visaliev, M. Kh. Kadieva, A. U. Dandaev, E. E. Magomadov, N. A. Kubrin, Kh. M. Kadiev

ABSTRACT

The paper investigates the sulfidation of the precursor of a dispersed molybdenum catalyst consisting of 190–500 nm particles in the hydroconversion of crude oil vacuum residue. The experiments were carried out in a flow-through autoclave reactor system at a hydrogen pressure of 2.5 MPa, in the temperature range of 380–440°C, and with a reaction time of 50–150 min. The catalyst sulfidation was demonstrated to result from a reaction with H2S, which is formed from the thermal decomposition of petroleum feedstock. The sulfidation at 380–400°C is a fairly slow process. At higher hydroconversion temperatures (420–440°C), the H2S concentration in the gas phase grows. However, the formation of compaction products creates a diffusion barrier for H2S transportation to the surface of the catalyst particles and, thus, prevents the precursor from being converted completely to the sulfide form. To enhance the degree of sulfidation, it is preferable to use sulfiding agents that ensure that hydrogen sulfide is formed under the hydroconversion conditions of heavy petroleum feedstock. More... »

PAGES

1096-1103

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544121100029

DOI

http://dx.doi.org/10.1134/s0965544121100029

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141968793


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zekel", 
        "givenName": "L. A.", 
        "id": "sg:person.012733636407.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733636407.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gyulmaliev", 
        "givenName": "A. M.", 
        "id": "sg:person.011577241722.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011577241722.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Batov", 
        "givenName": "A. E.", 
        "id": "sg:person.012257057735.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012257057735.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Visaliev", 
        "givenName": "M. Ya.", 
        "id": "sg:person.013671271701.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671271701.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadieva", 
        "givenName": "M. Kh.", 
        "id": "sg:person.010431675375.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431675375.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dandaev", 
        "givenName": "A. U.", 
        "id": "sg:person.015334772771.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015334772771.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magomadov", 
        "givenName": "E. E.", 
        "id": "sg:person.010334416261.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010334416261.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kubrin", 
        "givenName": "N. A.", 
        "id": "sg:person.012166703367.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012166703367.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadiev", 
        "givenName": "Kh. M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0965544120100059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1131540848", 
          "https://doi.org/10.1134/s0965544120100059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13762-016-0949-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021255883", 
          "https://doi.org/10.1007/s13762-016-0949-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13203-012-0006-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032273127", 
          "https://doi.org/10.1007/s13203-012-0006-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544114050065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046453241", 
          "https://doi.org/10.1134/s0965544114050065"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-19", 
    "datePublishedReg": "2021-10-19", 
    "description": "The paper investigates the sulfidation of the precursor of a dispersed molybdenum catalyst consisting of 190\u2013500 nm particles in the hydroconversion of crude oil vacuum residue. The experiments were carried out in a flow-through autoclave reactor system at a hydrogen pressure of 2.5 MPa, in the temperature range of 380\u2013440\u00b0C, and with a reaction time of 50\u2013150 min. The catalyst sulfidation was demonstrated to result from a reaction with H2S, which is formed from the thermal decomposition of petroleum feedstock. The sulfidation at 380\u2013400\u00b0C is a fairly slow process. At higher hydroconversion temperatures (420\u2013440\u00b0C), the H2S concentration in the gas phase grows. However, the formation of compaction products creates a diffusion barrier for H2S transportation to the surface of the catalyst particles and, thus, prevents the precursor from being converted completely to the sulfide form. To enhance the degree of sulfidation, it is preferable to use sulfiding agents that ensure that hydrogen sulfide is formed under the hydroconversion conditions of heavy petroleum feedstock.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965544121100029", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "keywords": [
      "petroleum feedstocks", 
      "molybdenum catalysts", 
      "degree of sulfidation", 
      "autoclave reactor system", 
      "hydrogen sulfide", 
      "catalyst sulfidation", 
      "H2 transportation", 
      "heavy petroleum feedstock", 
      "hydroconversion conditions", 
      "reactor system", 
      "gas phase", 
      "catalyst", 
      "sulfide form", 
      "thermal decomposition", 
      "diffusion barrier", 
      "hydrogen pressure", 
      "vacuum residue", 
      "sulfidation", 
      "H2 concentration", 
      "temperature range", 
      "reaction time", 
      "hydroconversion", 
      "feedstock", 
      "sulfide", 
      "precursors", 
      "MPa", 
      "slow process", 
      "reaction", 
      "H2", 
      "particles", 
      "temperature", 
      "surface", 
      "transportation", 
      "decomposition", 
      "formation", 
      "products", 
      "residues", 
      "phase", 
      "pressure", 
      "concentration", 
      "range", 
      "process", 
      "conditions", 
      "system", 
      "experiments", 
      "agents", 
      "min", 
      "time", 
      "barriers", 
      "form", 
      "degree", 
      "paper", 
      "crude oil vacuum residue", 
      "oil vacuum residue", 
      "flow-through autoclave reactor system", 
      "higher hydroconversion temperatures", 
      "hydroconversion temperatures", 
      "compaction products", 
      "Dispersed Molybdenum Catalyst"
    ], 
    "name": "Sulfidation of a Dispersed Molybdenum Catalyst with Hydrogen Sulfide Formed from Hydroconversion of Petroleum Feedstock", 
    "pagination": "1096-1103", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141968793"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544121100029"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544121100029", 
      "https://app.dimensions.ai/details/publication/pub.1141968793"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_911.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965544121100029"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544121100029'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544121100029'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544121100029'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544121100029'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      22 PREDICATES      88 URIs      76 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544121100029 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N03cb39492ab74ba5b5e4e8eb68b4f2ed
4 schema:citation sg:pub.10.1007/s13203-012-0006-6
5 sg:pub.10.1007/s13762-016-0949-8
6 sg:pub.10.1134/s0965544114050065
7 sg:pub.10.1134/s0965544120100059
8 schema:datePublished 2021-10-19
9 schema:datePublishedReg 2021-10-19
10 schema:description The paper investigates the sulfidation of the precursor of a dispersed molybdenum catalyst consisting of 190–500 nm particles in the hydroconversion of crude oil vacuum residue. The experiments were carried out in a flow-through autoclave reactor system at a hydrogen pressure of 2.5 MPa, in the temperature range of 380–440°C, and with a reaction time of 50–150 min. The catalyst sulfidation was demonstrated to result from a reaction with H2S, which is formed from the thermal decomposition of petroleum feedstock. The sulfidation at 380–400°C is a fairly slow process. At higher hydroconversion temperatures (420–440°C), the H2S concentration in the gas phase grows. However, the formation of compaction products creates a diffusion barrier for H2S transportation to the surface of the catalyst particles and, thus, prevents the precursor from being converted completely to the sulfide form. To enhance the degree of sulfidation, it is preferable to use sulfiding agents that ensure that hydrogen sulfide is formed under the hydroconversion conditions of heavy petroleum feedstock.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N77fb660129134d17ab68dd939e9fda4f
15 Nb24f2adbe9854cbebdb8ac5dd20bf2ac
16 sg:journal.1136087
17 schema:keywords Dispersed Molybdenum Catalyst
18 H2
19 H2 concentration
20 H2 transportation
21 MPa
22 agents
23 autoclave reactor system
24 barriers
25 catalyst
26 catalyst sulfidation
27 compaction products
28 concentration
29 conditions
30 crude oil vacuum residue
31 decomposition
32 degree
33 degree of sulfidation
34 diffusion barrier
35 experiments
36 feedstock
37 flow-through autoclave reactor system
38 form
39 formation
40 gas phase
41 heavy petroleum feedstock
42 higher hydroconversion temperatures
43 hydroconversion
44 hydroconversion conditions
45 hydroconversion temperatures
46 hydrogen pressure
47 hydrogen sulfide
48 min
49 molybdenum catalysts
50 oil vacuum residue
51 paper
52 particles
53 petroleum feedstocks
54 phase
55 precursors
56 pressure
57 process
58 products
59 range
60 reaction
61 reaction time
62 reactor system
63 residues
64 slow process
65 sulfidation
66 sulfide
67 sulfide form
68 surface
69 system
70 temperature
71 temperature range
72 thermal decomposition
73 time
74 transportation
75 vacuum residue
76 schema:name Sulfidation of a Dispersed Molybdenum Catalyst with Hydrogen Sulfide Formed from Hydroconversion of Petroleum Feedstock
77 schema:pagination 1096-1103
78 schema:productId N256656e86a7b4bb8b17201f98e6be972
79 Nd41f5fce89204ed785b5deed05771ef9
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141968793
81 https://doi.org/10.1134/s0965544121100029
82 schema:sdDatePublished 2022-01-01T19:01
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N64557fab219f49caa0b9646404e58fdd
85 schema:url https://doi.org/10.1134/s0965544121100029
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N03cb39492ab74ba5b5e4e8eb68b4f2ed rdf:first sg:person.012733636407.55
90 rdf:rest Ne683156f14cc4c0b84f573d2052b20cb
91 N256656e86a7b4bb8b17201f98e6be972 schema:name doi
92 schema:value 10.1134/s0965544121100029
93 rdf:type schema:PropertyValue
94 N4e476730000e4746a74301cabac4ab73 rdf:first N6c4310c21c8843e38948bddb607a731b
95 rdf:rest rdf:nil
96 N64557fab219f49caa0b9646404e58fdd schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N67cff82c1d8d49e794f3aa49ca52d32b rdf:first sg:person.012166703367.89
99 rdf:rest N4e476730000e4746a74301cabac4ab73
100 N6c4310c21c8843e38948bddb607a731b schema:affiliation grid-institutes:grid.423490.8
101 schema:familyName Kadiev
102 schema:givenName Kh. M.
103 rdf:type schema:Person
104 N77fb660129134d17ab68dd939e9fda4f schema:volumeNumber 61
105 rdf:type schema:PublicationVolume
106 N987a3995ec324cf389ae5658b8a77325 rdf:first sg:person.012257057735.83
107 rdf:rest Nb9436264ae3e447899ab3f00b7669ab1
108 Nb03f68f9efd64a9588faf6737733d92c rdf:first sg:person.010431675375.32
109 rdf:rest Nb3bc4ea3a1ea4093ac09f4c4b53b8d45
110 Nb24f2adbe9854cbebdb8ac5dd20bf2ac schema:issueNumber 10
111 rdf:type schema:PublicationIssue
112 Nb3bc4ea3a1ea4093ac09f4c4b53b8d45 rdf:first sg:person.015334772771.22
113 rdf:rest Nfffc4a313df741779fc7654287c0156e
114 Nb9436264ae3e447899ab3f00b7669ab1 rdf:first sg:person.013671271701.68
115 rdf:rest Nb03f68f9efd64a9588faf6737733d92c
116 Nd41f5fce89204ed785b5deed05771ef9 schema:name dimensions_id
117 schema:value pub.1141968793
118 rdf:type schema:PropertyValue
119 Ne683156f14cc4c0b84f573d2052b20cb rdf:first sg:person.011577241722.70
120 rdf:rest N987a3995ec324cf389ae5658b8a77325
121 Nfffc4a313df741779fc7654287c0156e rdf:first sg:person.010334416261.46
122 rdf:rest N67cff82c1d8d49e794f3aa49ca52d32b
123 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
124 schema:name Engineering
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
127 schema:name Chemical Engineering
128 rdf:type schema:DefinedTerm
129 sg:journal.1136087 schema:issn 0965-5441
130 1555-6239
131 schema:name Petroleum Chemistry
132 schema:publisher Pleiades Publishing
133 rdf:type schema:Periodical
134 sg:person.010334416261.46 schema:affiliation grid-institutes:grid.423490.8
135 schema:familyName Magomadov
136 schema:givenName E. E.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010334416261.46
138 rdf:type schema:Person
139 sg:person.010431675375.32 schema:affiliation grid-institutes:grid.423490.8
140 schema:familyName Kadieva
141 schema:givenName M. Kh.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431675375.32
143 rdf:type schema:Person
144 sg:person.011577241722.70 schema:affiliation grid-institutes:grid.423490.8
145 schema:familyName Gyulmaliev
146 schema:givenName A. M.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011577241722.70
148 rdf:type schema:Person
149 sg:person.012166703367.89 schema:affiliation grid-institutes:grid.423490.8
150 schema:familyName Kubrin
151 schema:givenName N. A.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012166703367.89
153 rdf:type schema:Person
154 sg:person.012257057735.83 schema:affiliation grid-institutes:grid.423490.8
155 schema:familyName Batov
156 schema:givenName A. E.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012257057735.83
158 rdf:type schema:Person
159 sg:person.012733636407.55 schema:affiliation grid-institutes:grid.423490.8
160 schema:familyName Zekel
161 schema:givenName L. A.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733636407.55
163 rdf:type schema:Person
164 sg:person.013671271701.68 schema:affiliation grid-institutes:grid.423490.8
165 schema:familyName Visaliev
166 schema:givenName M. Ya.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671271701.68
168 rdf:type schema:Person
169 sg:person.015334772771.22 schema:affiliation grid-institutes:grid.423490.8
170 schema:familyName Dandaev
171 schema:givenName A. U.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015334772771.22
173 rdf:type schema:Person
174 sg:pub.10.1007/s13203-012-0006-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032273127
175 https://doi.org/10.1007/s13203-012-0006-6
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s13762-016-0949-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021255883
178 https://doi.org/10.1007/s13762-016-0949-8
179 rdf:type schema:CreativeWork
180 sg:pub.10.1134/s0965544114050065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046453241
181 https://doi.org/10.1134/s0965544114050065
182 rdf:type schema:CreativeWork
183 sg:pub.10.1134/s0965544120100059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131540848
184 https://doi.org/10.1134/s0965544120100059
185 rdf:type schema:CreativeWork
186 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
187 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...