Behavior of Vanadium and Nickel in Hydroconversion of Vacuum Tower Bottoms over Nanosized Slurry Catalysts View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-09-24

AUTHORS

Kh. M. Kadiev, L. A. Zekel’, M. Kh. Kadieva, A. M. Gul’maliev, A. E. Batov, M. Ya. Visaliev, A. U. Dandaev, E. E. Magomadov, N. A. Kubrin

ABSTRACT

The distribution of vanadium and nickel upon hydroconversion of vacuum tower bottoms in the presence of slurried MoS2, Ni7S6, (NH4)0.25 ⋅ WO3, and Fe1 − xS nanoparticles has been studied. The experiments have been performed in an autoclave reactor and in a flow-through hydroconversion unit. It has been shown that the coke yield in hydrocracking reactions increases in the order MoS2, Ni7S6, (NH4)0.25 ⋅ WO3, Fe1 − xS. The proportion of metals in the toluene-insoluble hydroconversion residue increases in the same order. As the hydroconversion temperature increases, the transfer of vanadium and nickel to condensation products increases. According to electron microscopy data for the toluene insolubles, it can be assumed that vanadium and nickel are bonded to carbon, enter into the coke composition, and do not form compounds with the active phase of the MoS2 catalyst. More... »

PAGES

1009-1018

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544120090133

DOI

http://dx.doi.org/10.1134/s0965544120090133

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1131168085


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadiev", 
        "givenName": "Kh. M.", 
        "id": "sg:person.012531050145.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012531050145.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zekel\u2019", 
        "givenName": "L. A.", 
        "id": "sg:person.012733636407.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733636407.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadieva", 
        "givenName": "M. Kh.", 
        "id": "sg:person.010431675375.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431675375.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gul\u2019maliev", 
        "givenName": "A. M.", 
        "id": "sg:person.012605713414.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012605713414.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Batov", 
        "givenName": "A. E.", 
        "id": "sg:person.012257057735.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012257057735.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Visaliev", 
        "givenName": "M. Ya.", 
        "id": "sg:person.013671271701.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671271701.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dandaev", 
        "givenName": "A. U.", 
        "id": "sg:person.015334772771.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015334772771.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magomadov", 
        "givenName": "E. E.", 
        "id": "sg:person.010334416261.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010334416261.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kubrin", 
        "givenName": "N. A.", 
        "id": "sg:person.012166703367.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012166703367.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0965544114050065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046453241", 
          "https://doi.org/10.1134/s0965544114050065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544116060050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046427807", 
          "https://doi.org/10.1134/s0965544116060050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544118070046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105672995", 
          "https://doi.org/10.1134/s0965544118070046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544117070039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090596103", 
          "https://doi.org/10.1134/s0965544117070039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s096554411909010x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1121335363", 
          "https://doi.org/10.1134/s096554411909010x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-09-24", 
    "datePublishedReg": "2020-09-24", 
    "description": "The distribution of vanadium and nickel upon hydroconversion of vacuum tower bottoms in the presence of slurried MoS2, Ni7S6, (NH4)0.25 \u22c5 WO3, and Fe1\u00a0\u2212\u00a0xS nanoparticles has been studied. The experiments have been performed in an autoclave reactor and in a flow-through hydroconversion unit. It has been shown that the coke yield in hydrocracking reactions increases in the order MoS2, Ni7S6, (NH4)0.25 \u22c5 WO3, Fe1\u00a0\u2212\u00a0xS. The proportion of metals in the toluene-insoluble hydroconversion residue increases in the same order. As the hydroconversion temperature increases, the transfer of vanadium and nickel to condensation products increases. According to electron microscopy data for the toluene insolubles, it can be assumed that vanadium and nickel are bonded to carbon, enter into the coke composition, and do not form compounds with the active phase of the MoS2 catalyst.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965544120090133", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "keywords": [
      "vacuum tower bottoms", 
      "distribution of vanadium", 
      "slurry catalyst", 
      "MoS2 catalyst", 
      "autoclave reactor", 
      "proportion of metals", 
      "behaviour of vanadium", 
      "reaction increases", 
      "electron microscopy data", 
      "vanadium", 
      "nickel", 
      "catalyst", 
      "hydroconversion", 
      "Ni7S6", 
      "active phase", 
      "coke composition", 
      "WO3", 
      "toluene insolubles", 
      "coke yield", 
      "MoS2", 
      "microscopy data", 
      "Fe1", 
      "products increases", 
      "residue increases", 
      "nanoparticles", 
      "tower bottom", 
      "compounds", 
      "metals", 
      "carbon", 
      "insolubles", 
      "same order", 
      "reactor", 
      "yield", 
      "transfer", 
      "composition", 
      "temperature", 
      "phase", 
      "presence", 
      "units", 
      "bottom", 
      "behavior", 
      "increase", 
      "experiments", 
      "order", 
      "distribution", 
      "flow", 
      "data", 
      "proportion", 
      "slurried MoS2", 
      "hydroconversion unit", 
      "order MoS2", 
      "toluene-insoluble hydroconversion residue increases", 
      "hydroconversion residue increases", 
      "hydroconversion temperature", 
      "transfer of vanadium", 
      "condensation products increases", 
      "Nanosized Slurry Catalysts"
    ], 
    "name": "Behavior of Vanadium and Nickel in Hydroconversion of Vacuum Tower Bottoms over Nanosized Slurry Catalysts", 
    "pagination": "1009-1018", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1131168085"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544120090133"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544120090133", 
      "https://app.dimensions.ai/details/publication/pub.1131168085"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_862.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965544120090133"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544120090133'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544120090133'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544120090133'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544120090133'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      22 PREDICATES      87 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544120090133 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N02887eaffb8d431a8f590f55167acc7a
4 schema:citation sg:pub.10.1134/s0965544114050065
5 sg:pub.10.1134/s0965544116060050
6 sg:pub.10.1134/s0965544117070039
7 sg:pub.10.1134/s0965544118070046
8 sg:pub.10.1134/s096554411909010x
9 schema:datePublished 2020-09-24
10 schema:datePublishedReg 2020-09-24
11 schema:description The distribution of vanadium and nickel upon hydroconversion of vacuum tower bottoms in the presence of slurried MoS2, Ni7S6, (NH4)0.25 ⋅ WO3, and Fe1 − xS nanoparticles has been studied. The experiments have been performed in an autoclave reactor and in a flow-through hydroconversion unit. It has been shown that the coke yield in hydrocracking reactions increases in the order MoS2, Ni7S6, (NH4)0.25 ⋅ WO3, Fe1 − xS. The proportion of metals in the toluene-insoluble hydroconversion residue increases in the same order. As the hydroconversion temperature increases, the transfer of vanadium and nickel to condensation products increases. According to electron microscopy data for the toluene insolubles, it can be assumed that vanadium and nickel are bonded to carbon, enter into the coke composition, and do not form compounds with the active phase of the MoS2 catalyst.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Nd08a8a88ff06407d97b351e7187a89c4
16 Ne5efa3ecafc4407d9fcabef96c2b00be
17 sg:journal.1136087
18 schema:keywords Fe1
19 MoS2
20 MoS2 catalyst
21 Nanosized Slurry Catalysts
22 Ni7S6
23 WO3
24 active phase
25 autoclave reactor
26 behavior
27 behaviour of vanadium
28 bottom
29 carbon
30 catalyst
31 coke composition
32 coke yield
33 composition
34 compounds
35 condensation products increases
36 data
37 distribution
38 distribution of vanadium
39 electron microscopy data
40 experiments
41 flow
42 hydroconversion
43 hydroconversion residue increases
44 hydroconversion temperature
45 hydroconversion unit
46 increase
47 insolubles
48 metals
49 microscopy data
50 nanoparticles
51 nickel
52 order
53 order MoS2
54 phase
55 presence
56 products increases
57 proportion
58 proportion of metals
59 reaction increases
60 reactor
61 residue increases
62 same order
63 slurried MoS2
64 slurry catalyst
65 temperature
66 toluene insolubles
67 toluene-insoluble hydroconversion residue increases
68 tower bottom
69 transfer
70 transfer of vanadium
71 units
72 vacuum tower bottoms
73 vanadium
74 yield
75 schema:name Behavior of Vanadium and Nickel in Hydroconversion of Vacuum Tower Bottoms over Nanosized Slurry Catalysts
76 schema:pagination 1009-1018
77 schema:productId N466e96cfb0aa47b08889c0a75ccf6ed1
78 N92fa891c948e49f28fc8e5b82deff389
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131168085
80 https://doi.org/10.1134/s0965544120090133
81 schema:sdDatePublished 2022-01-01T18:59
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N544cfad0a82e4f8c95054f5ff93519fd
84 schema:url https://doi.org/10.1134/s0965544120090133
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N02887eaffb8d431a8f590f55167acc7a rdf:first sg:person.012531050145.44
89 rdf:rest Nd4c9d013991c4d0e9ab0a60c1fa133ba
90 N466e96cfb0aa47b08889c0a75ccf6ed1 schema:name doi
91 schema:value 10.1134/s0965544120090133
92 rdf:type schema:PropertyValue
93 N49745787fbc246a090223265be3309ee rdf:first sg:person.015334772771.22
94 rdf:rest Nf277382d01ac43bd9a7d809e29adc815
95 N522df27e2b8944e0bf5be059c26003c1 rdf:first sg:person.013671271701.68
96 rdf:rest N49745787fbc246a090223265be3309ee
97 N544cfad0a82e4f8c95054f5ff93519fd schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N5b2e8fa36ac54d15b3a6bac3abd2bb6d rdf:first sg:person.012257057735.83
100 rdf:rest N522df27e2b8944e0bf5be059c26003c1
101 N87611075bc0f45dfab4fc9c3e98e4f6f rdf:first sg:person.012166703367.89
102 rdf:rest rdf:nil
103 N92fa891c948e49f28fc8e5b82deff389 schema:name dimensions_id
104 schema:value pub.1131168085
105 rdf:type schema:PropertyValue
106 Na6cbd1596c004ec6bdbbe84635ac64c4 rdf:first sg:person.012605713414.41
107 rdf:rest N5b2e8fa36ac54d15b3a6bac3abd2bb6d
108 Nbb0dbde5563549fca0f7ebb3c37bfed8 rdf:first sg:person.010431675375.32
109 rdf:rest Na6cbd1596c004ec6bdbbe84635ac64c4
110 Nd08a8a88ff06407d97b351e7187a89c4 schema:volumeNumber 60
111 rdf:type schema:PublicationVolume
112 Nd4c9d013991c4d0e9ab0a60c1fa133ba rdf:first sg:person.012733636407.55
113 rdf:rest Nbb0dbde5563549fca0f7ebb3c37bfed8
114 Ne5efa3ecafc4407d9fcabef96c2b00be schema:issueNumber 9
115 rdf:type schema:PublicationIssue
116 Nf277382d01ac43bd9a7d809e29adc815 rdf:first sg:person.010334416261.46
117 rdf:rest N87611075bc0f45dfab4fc9c3e98e4f6f
118 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
119 schema:name Engineering
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
122 schema:name Chemical Engineering
123 rdf:type schema:DefinedTerm
124 sg:journal.1136087 schema:issn 0965-5441
125 1555-6239
126 schema:name Petroleum Chemistry
127 schema:publisher Pleiades Publishing
128 rdf:type schema:Periodical
129 sg:person.010334416261.46 schema:affiliation grid-institutes:grid.423490.8
130 schema:familyName Magomadov
131 schema:givenName E. E.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010334416261.46
133 rdf:type schema:Person
134 sg:person.010431675375.32 schema:affiliation grid-institutes:grid.423490.8
135 schema:familyName Kadieva
136 schema:givenName M. Kh.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431675375.32
138 rdf:type schema:Person
139 sg:person.012166703367.89 schema:affiliation grid-institutes:grid.423490.8
140 schema:familyName Kubrin
141 schema:givenName N. A.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012166703367.89
143 rdf:type schema:Person
144 sg:person.012257057735.83 schema:affiliation grid-institutes:grid.423490.8
145 schema:familyName Batov
146 schema:givenName A. E.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012257057735.83
148 rdf:type schema:Person
149 sg:person.012531050145.44 schema:affiliation grid-institutes:grid.423490.8
150 schema:familyName Kadiev
151 schema:givenName Kh. M.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012531050145.44
153 rdf:type schema:Person
154 sg:person.012605713414.41 schema:affiliation grid-institutes:grid.423490.8
155 schema:familyName Gul’maliev
156 schema:givenName A. M.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012605713414.41
158 rdf:type schema:Person
159 sg:person.012733636407.55 schema:affiliation grid-institutes:grid.423490.8
160 schema:familyName Zekel’
161 schema:givenName L. A.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733636407.55
163 rdf:type schema:Person
164 sg:person.013671271701.68 schema:affiliation grid-institutes:grid.423490.8
165 schema:familyName Visaliev
166 schema:givenName M. Ya.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671271701.68
168 rdf:type schema:Person
169 sg:person.015334772771.22 schema:affiliation grid-institutes:grid.423490.8
170 schema:familyName Dandaev
171 schema:givenName A. U.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015334772771.22
173 rdf:type schema:Person
174 sg:pub.10.1134/s0965544114050065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046453241
175 https://doi.org/10.1134/s0965544114050065
176 rdf:type schema:CreativeWork
177 sg:pub.10.1134/s0965544116060050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046427807
178 https://doi.org/10.1134/s0965544116060050
179 rdf:type schema:CreativeWork
180 sg:pub.10.1134/s0965544117070039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090596103
181 https://doi.org/10.1134/s0965544117070039
182 rdf:type schema:CreativeWork
183 sg:pub.10.1134/s0965544118070046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105672995
184 https://doi.org/10.1134/s0965544118070046
185 rdf:type schema:CreativeWork
186 sg:pub.10.1134/s096554411909010x schema:sameAs https://app.dimensions.ai/details/publication/pub.1121335363
187 https://doi.org/10.1134/s096554411909010x
188 rdf:type schema:CreativeWork
189 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
190 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...