Hydroconversion of Oil Vacuum Distillation Residues in the Presence of Ultrafine Iron-Containing Catalysts Synthesized from Oil-Soluble Precursors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Kh. M. Kadiev, L. A. Zekel’, A. M. Gyul’maliev, A. U. Dandaev, M. Kh. Kadieva

ABSTRACT

The hydroconversion of oil distillation residues in the presence of ultrafine catalysts synthesized in the reaction medium from feedstock-soluble iron-containing precursors—iron acetylacetonate, ferrocene, and iron oleate—is studied. It is found that the distillate fraction yield and the feedstock conversion in the hydroconversion reaction increase in the following order: iron oleate, ferrocene, iron acetylacetonate. The efficiency of Fe-containing catalysts synthesized from oil-soluble precursors is compared with the efficiency of the nanosized MoS2 catalyst previously studied in the tar hydroconversion process. In the presence of the catalysts synthesized from iron acetylacetonate and ferrocene, the distillate fraction yield and the feedstock conversion are higher than the respective parameters in the case of MoS2. However, with respect to the yield of condensation products (coke), the tested Fe-containing catalysts are significantly inferior to MoS2. More... »

PAGES

498-503

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544119050037

DOI

http://dx.doi.org/10.1134/s0965544119050037

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1117051187


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadiev", 
        "givenName": "Kh. M.", 
        "id": "sg:person.012531050145.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012531050145.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zekel\u2019", 
        "givenName": "L. A.", 
        "id": "sg:person.012733636407.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733636407.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gyul\u2019maliev", 
        "givenName": "A. M.", 
        "id": "sg:person.014421456061.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421456061.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dandaev", 
        "givenName": "A. U.", 
        "id": "sg:person.015334772771.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015334772771.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadieva", 
        "givenName": "M. Kh.", 
        "id": "sg:person.010431675375.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431675375.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0965544114050065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046453241", 
          "https://doi.org/10.1134/s0965544114050065"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "The hydroconversion of oil distillation residues in the presence of ultrafine catalysts synthesized in the reaction medium from feedstock-soluble iron-containing precursors\u2014iron acetylacetonate, ferrocene, and iron oleate\u2014is studied. It is found that the distillate fraction yield and the feedstock conversion in the hydroconversion reaction increase in the following order: iron oleate, ferrocene, iron acetylacetonate. The efficiency of Fe-containing catalysts synthesized from oil-soluble precursors is compared with the efficiency of the nanosized MoS2 catalyst previously studied in the tar hydroconversion process. In the presence of the catalysts synthesized from iron acetylacetonate and ferrocene, the distillate fraction yield and the feedstock conversion are higher than the respective parameters in the case of MoS2. However, with respect to the yield of condensation products (coke), the tested Fe-containing catalysts are significantly inferior to MoS2.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965544119050037", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "59"
      }
    ], 
    "keywords": [
      "oil-soluble precursors", 
      "iron acetylacetonate", 
      "feedstock conversion", 
      "fraction yield", 
      "distillation residue", 
      "efficiency of Fe", 
      "iron oleate", 
      "case of MoS2", 
      "oil vacuum distillation residue", 
      "vacuum distillation residue", 
      "hydroconversion process", 
      "ultrafine catalysts", 
      "MoS2", 
      "catalyst", 
      "acetylacetonate", 
      "MoS2 catalyst", 
      "efficiency", 
      "Fe", 
      "reaction medium", 
      "hydroconversion", 
      "reaction increases", 
      "condensation products", 
      "ferrocene", 
      "conversion", 
      "respective parameters", 
      "parameters", 
      "precursors", 
      "iron", 
      "process", 
      "yield", 
      "order", 
      "residues", 
      "products", 
      "presence", 
      "respect", 
      "medium", 
      "increase", 
      "oleate", 
      "cases", 
      "oil distillation residues", 
      "feedstock-soluble iron-containing precursors\u2014iron acetylacetonate", 
      "iron-containing precursors\u2014iron acetylacetonate", 
      "precursors\u2014iron acetylacetonate", 
      "distillate fraction yield", 
      "hydroconversion reaction increase", 
      "tar hydroconversion process", 
      "Ultrafine Iron-Containing Catalysts", 
      "Iron-Containing Catalysts"
    ], 
    "name": "Hydroconversion of Oil Vacuum Distillation Residues in the Presence of Ultrafine Iron-Containing Catalysts Synthesized from Oil-Soluble Precursors", 
    "pagination": "498-503", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1117051187"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544119050037"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544119050037", 
      "https://app.dimensions.ai/details/publication/pub.1117051187"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_803.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965544119050037"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544119050037'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544119050037'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544119050037'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544119050037'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      22 PREDICATES      75 URIs      66 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544119050037 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N3a8ec75475764a67be2deb841a895613
4 schema:citation sg:pub.10.1134/s0965544114050065
5 schema:datePublished 2019-05
6 schema:datePublishedReg 2019-05-01
7 schema:description The hydroconversion of oil distillation residues in the presence of ultrafine catalysts synthesized in the reaction medium from feedstock-soluble iron-containing precursors—iron acetylacetonate, ferrocene, and iron oleate—is studied. It is found that the distillate fraction yield and the feedstock conversion in the hydroconversion reaction increase in the following order: iron oleate, ferrocene, iron acetylacetonate. The efficiency of Fe-containing catalysts synthesized from oil-soluble precursors is compared with the efficiency of the nanosized MoS2 catalyst previously studied in the tar hydroconversion process. In the presence of the catalysts synthesized from iron acetylacetonate and ferrocene, the distillate fraction yield and the feedstock conversion are higher than the respective parameters in the case of MoS2. However, with respect to the yield of condensation products (coke), the tested Fe-containing catalysts are significantly inferior to MoS2.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N49f1d50496214cf585de3adbaaf66661
12 Nfb15f4c10b944b1cac409e60aac9b776
13 sg:journal.1136087
14 schema:keywords Fe
15 Iron-Containing Catalysts
16 MoS2
17 MoS2 catalyst
18 Ultrafine Iron-Containing Catalysts
19 acetylacetonate
20 case of MoS2
21 cases
22 catalyst
23 condensation products
24 conversion
25 distillate fraction yield
26 distillation residue
27 efficiency
28 efficiency of Fe
29 feedstock conversion
30 feedstock-soluble iron-containing precursors—iron acetylacetonate
31 ferrocene
32 fraction yield
33 hydroconversion
34 hydroconversion process
35 hydroconversion reaction increase
36 increase
37 iron
38 iron acetylacetonate
39 iron oleate
40 iron-containing precursors—iron acetylacetonate
41 medium
42 oil distillation residues
43 oil vacuum distillation residue
44 oil-soluble precursors
45 oleate
46 order
47 parameters
48 precursors
49 precursors—iron acetylacetonate
50 presence
51 process
52 products
53 reaction increases
54 reaction medium
55 residues
56 respect
57 respective parameters
58 tar hydroconversion process
59 ultrafine catalysts
60 vacuum distillation residue
61 yield
62 schema:name Hydroconversion of Oil Vacuum Distillation Residues in the Presence of Ultrafine Iron-Containing Catalysts Synthesized from Oil-Soluble Precursors
63 schema:pagination 498-503
64 schema:productId N02a3f3c040c943bfab2e4eeb13000c6a
65 N52527be8903a4686aec89030f9e506a7
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117051187
67 https://doi.org/10.1134/s0965544119050037
68 schema:sdDatePublished 2022-01-01T18:49
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nd7d85e6909894fc8baca9c0d4494a43d
71 schema:url https://doi.org/10.1134/s0965544119050037
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N02a3f3c040c943bfab2e4eeb13000c6a schema:name doi
76 schema:value 10.1134/s0965544119050037
77 rdf:type schema:PropertyValue
78 N1f6b4301729c4f08aadf834f7292d855 rdf:first sg:person.010431675375.32
79 rdf:rest rdf:nil
80 N3286d244de394085a5a2a7b93a945e76 rdf:first sg:person.015334772771.22
81 rdf:rest N1f6b4301729c4f08aadf834f7292d855
82 N3309a4582fed43f985990d1c11bc63f4 rdf:first sg:person.014421456061.65
83 rdf:rest N3286d244de394085a5a2a7b93a945e76
84 N3a8ec75475764a67be2deb841a895613 rdf:first sg:person.012531050145.44
85 rdf:rest N816cd5a40c724ef782f38b8eb4fe9639
86 N49f1d50496214cf585de3adbaaf66661 schema:issueNumber 5
87 rdf:type schema:PublicationIssue
88 N52527be8903a4686aec89030f9e506a7 schema:name dimensions_id
89 schema:value pub.1117051187
90 rdf:type schema:PropertyValue
91 N816cd5a40c724ef782f38b8eb4fe9639 rdf:first sg:person.012733636407.55
92 rdf:rest N3309a4582fed43f985990d1c11bc63f4
93 Nd7d85e6909894fc8baca9c0d4494a43d schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Nfb15f4c10b944b1cac409e60aac9b776 schema:volumeNumber 59
96 rdf:type schema:PublicationVolume
97 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
98 schema:name Engineering
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
101 schema:name Chemical Engineering
102 rdf:type schema:DefinedTerm
103 sg:journal.1136087 schema:issn 0965-5441
104 1555-6239
105 schema:name Petroleum Chemistry
106 schema:publisher Pleiades Publishing
107 rdf:type schema:Periodical
108 sg:person.010431675375.32 schema:affiliation grid-institutes:grid.423490.8
109 schema:familyName Kadieva
110 schema:givenName M. Kh.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431675375.32
112 rdf:type schema:Person
113 sg:person.012531050145.44 schema:affiliation grid-institutes:grid.423490.8
114 schema:familyName Kadiev
115 schema:givenName Kh. M.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012531050145.44
117 rdf:type schema:Person
118 sg:person.012733636407.55 schema:affiliation grid-institutes:grid.423490.8
119 schema:familyName Zekel’
120 schema:givenName L. A.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733636407.55
122 rdf:type schema:Person
123 sg:person.014421456061.65 schema:affiliation grid-institutes:grid.423490.8
124 schema:familyName Gyul’maliev
125 schema:givenName A. M.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421456061.65
127 rdf:type schema:Person
128 sg:person.015334772771.22 schema:affiliation grid-institutes:grid.423490.8
129 schema:familyName Dandaev
130 schema:givenName A. U.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015334772771.22
132 rdf:type schema:Person
133 sg:pub.10.1134/s0965544114050065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046453241
134 https://doi.org/10.1134/s0965544114050065
135 rdf:type schema:CreativeWork
136 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
137 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...