Sorption and Nanofiltration Characteristics of PIM-1 Material in Polar and Non-Polar Solvents View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

A. A. Yushkin, T. S. Anokhina, S. D. Bazhenov, I. L. Borisov, P. M. Budd, A. V. Volkov

ABSTRACT

The affinity of polar extractants (propylene carbonate, dimethylsulfoxide, dimethylformamide, triethylene glycol and dimethylacetamide) and benzene, toluene, p-xylene and m-xylene (so-called BTX fraction) for PIM-1 material was evaluated. The mass-transfer coefficients of selected solvents were determined in organic solvent nanofiltration process. All solvents showed a good affinity toward PIM-1 polymer; while the large values of sorption and PIM-1 swelling degree were in the case of benzene (1.63 g/g, 192%), toluene (1.72 g/g, 186%) and xylenes (1.61–1.76 g/g, 147–170%); while these values for selected polar solvents were in the range of 1.09–1.48 g/g and 83–108%, respectively. The values of sorption and swelling degree were successfully correlated with Hansen’s solubility parameters. Values of permeability coefficients of nonpolar solvents through PIM-1 membranes were 1.5–5.5 times higher than those for polar solvents. With increasing affinity of the solvent toward polymer, the values of the permeability coefficients also increased. More... »

PAGES

1154-1158

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s096554411813011x

DOI

http://dx.doi.org/10.1134/s096554411813011x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111369125


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "A.V.Topchiev Institute of Petrochemical Synthesis", 
          "id": "https://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yushkin", 
        "givenName": "A. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V.Topchiev Institute of Petrochemical Synthesis", 
          "id": "https://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anokhina", 
        "givenName": "T. S.", 
        "id": "sg:person.013672626460.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013672626460.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V.Topchiev Institute of Petrochemical Synthesis", 
          "id": "https://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bazhenov", 
        "givenName": "S. D.", 
        "id": "sg:person.013301711627.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301711627.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V.Topchiev Institute of Petrochemical Synthesis", 
          "id": "https://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borisov", 
        "givenName": "I. L.", 
        "id": "sg:person.011075136212.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011075136212.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Chemistry, The University of Manchester, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Budd", 
        "givenName": "P. M.", 
        "id": "sg:person.01066441075.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066441075.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Chemistry, The University of Manchester, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Volkov", 
        "givenName": "A. V.", 
        "id": "sg:person.012655354565.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012655354565.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/adma.200306053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000852444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jms.2016.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013237295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cbi.2009.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016548585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2008.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016749647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2016.08.164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019587813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1001-0742(08)62150-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023291982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2012.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025916206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.seppur.2015.10.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030086800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2012.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030538733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jssc.200800556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031786383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2009.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032098445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ceramint.2016.06.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033238618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2006.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038550659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr500006j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045146786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.reactfunctpolym.2014.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047433122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965545x08040135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049498589", 
          "https://doi.org/10.1134/s0965545x08040135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma801858d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050651588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma801858d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050651588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcis.2016.12.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052994286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2017.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083694644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2018.01.205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100739164"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The affinity of polar extractants (propylene carbonate, dimethylsulfoxide, dimethylformamide, triethylene glycol and dimethylacetamide) and benzene, toluene, p-xylene and m-xylene (so-called BTX fraction) for PIM-1 material was evaluated. The mass-transfer coefficients of selected solvents were determined in organic solvent nanofiltration process. All solvents showed a good affinity toward PIM-1 polymer; while the large values of sorption and PIM-1 swelling degree were in the case of benzene (1.63 g/g, 192%), toluene (1.72 g/g, 186%) and xylenes (1.61\u20131.76 g/g, 147\u2013170%); while these values for selected polar solvents were in the range of 1.09\u20131.48 g/g and 83\u2013108%, respectively. The values of sorption and swelling degree were successfully correlated with Hansen\u2019s solubility parameters. Values of permeability coefficients of nonpolar solvents through PIM-1 membranes were 1.5\u20135.5 times higher than those for polar solvents. With increasing affinity of the solvent toward polymer, the values of the permeability coefficients also increased.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s096554411813011x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "13", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Sorption and Nanofiltration Characteristics of PIM-1 Material in Polar and Non-Polar Solvents", 
    "pagination": "1154-1158", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c242c16080219832159aa39377874e2c5435b529dd5d43a10108b28907933494"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s096554411813011x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111369125"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s096554411813011x", 
      "https://app.dimensions.ai/details/publication/pub.1111369125"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000317_0000000317/records_116895_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS096554411813011X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s096554411813011x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s096554411813011x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s096554411813011x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s096554411813011x'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s096554411813011x schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N11c719c7277741eba205e0097fba2cfa
4 schema:citation sg:pub.10.1134/s0965545x08040135
5 https://doi.org/10.1002/adma.200306053
6 https://doi.org/10.1002/jssc.200800556
7 https://doi.org/10.1016/j.cbi.2009.12.020
8 https://doi.org/10.1016/j.ceramint.2016.06.145
9 https://doi.org/10.1016/j.jcis.2016.12.048
10 https://doi.org/10.1016/j.jms.2016.02.004
11 https://doi.org/10.1016/j.memsci.2006.09.006
12 https://doi.org/10.1016/j.memsci.2008.09.010
13 https://doi.org/10.1016/j.memsci.2009.02.003
14 https://doi.org/10.1016/j.memsci.2012.02.008
15 https://doi.org/10.1016/j.memsci.2012.07.026
16 https://doi.org/10.1016/j.memsci.2017.02.008
17 https://doi.org/10.1016/j.reactfunctpolym.2014.06.010
18 https://doi.org/10.1016/j.seppur.2015.10.066
19 https://doi.org/10.1016/j.snb.2016.08.164
20 https://doi.org/10.1016/j.snb.2018.01.205
21 https://doi.org/10.1016/s1001-0742(08)62150-6
22 https://doi.org/10.1021/cr500006j
23 https://doi.org/10.1021/ma801858d
24 schema:datePublished 2018-12
25 schema:datePublishedReg 2018-12-01
26 schema:description The affinity of polar extractants (propylene carbonate, dimethylsulfoxide, dimethylformamide, triethylene glycol and dimethylacetamide) and benzene, toluene, p-xylene and m-xylene (so-called BTX fraction) for PIM-1 material was evaluated. The mass-transfer coefficients of selected solvents were determined in organic solvent nanofiltration process. All solvents showed a good affinity toward PIM-1 polymer; while the large values of sorption and PIM-1 swelling degree were in the case of benzene (1.63 g/g, 192%), toluene (1.72 g/g, 186%) and xylenes (1.61–1.76 g/g, 147–170%); while these values for selected polar solvents were in the range of 1.09–1.48 g/g and 83–108%, respectively. The values of sorption and swelling degree were successfully correlated with Hansen’s solubility parameters. Values of permeability coefficients of nonpolar solvents through PIM-1 membranes were 1.5–5.5 times higher than those for polar solvents. With increasing affinity of the solvent toward polymer, the values of the permeability coefficients also increased.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf Nd498ad80189b4a7dbaf8b8bc91b03a91
31 Ne748554332524b0ca49efd0a4398c5b4
32 sg:journal.1136087
33 schema:name Sorption and Nanofiltration Characteristics of PIM-1 Material in Polar and Non-Polar Solvents
34 schema:pagination 1154-1158
35 schema:productId N05273f70864d418d8f9e77d0b0a72a45
36 N7d81299f30d24d50ad202ea829c38098
37 Nf89c9a3f4e3a4ea898d586aa65ed836b
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111369125
39 https://doi.org/10.1134/s096554411813011x
40 schema:sdDatePublished 2019-04-11T08:39
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Ned89024c80054176aea5dc3362e37528
43 schema:url https://link.springer.com/10.1134%2FS096554411813011X
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N003f764aa1c74828a23090a00717863f rdf:first sg:person.013301711627.81
48 rdf:rest N2fd092b7420c44bbbc1c3a32f4134cea
49 N05273f70864d418d8f9e77d0b0a72a45 schema:name dimensions_id
50 schema:value pub.1111369125
51 rdf:type schema:PropertyValue
52 N11c719c7277741eba205e0097fba2cfa rdf:first N8c357d63d6364d67999a007a9d8b956a
53 rdf:rest Na3e0a2be01af4010ae08f9f824fe1365
54 N2fd092b7420c44bbbc1c3a32f4134cea rdf:first sg:person.011075136212.72
55 rdf:rest Nf59508902af9448498d0ee017d9a3270
56 N7d81299f30d24d50ad202ea829c38098 schema:name doi
57 schema:value 10.1134/s096554411813011x
58 rdf:type schema:PropertyValue
59 N88797ef62be24a8e99f307e167474c43 rdf:first sg:person.012655354565.76
60 rdf:rest rdf:nil
61 N8c357d63d6364d67999a007a9d8b956a schema:affiliation https://www.grid.ac/institutes/grid.423490.8
62 schema:familyName Yushkin
63 schema:givenName A. A.
64 rdf:type schema:Person
65 Na3e0a2be01af4010ae08f9f824fe1365 rdf:first sg:person.013672626460.99
66 rdf:rest N003f764aa1c74828a23090a00717863f
67 Nd498ad80189b4a7dbaf8b8bc91b03a91 schema:issueNumber 13
68 rdf:type schema:PublicationIssue
69 Ne748554332524b0ca49efd0a4398c5b4 schema:volumeNumber 58
70 rdf:type schema:PublicationVolume
71 Ned89024c80054176aea5dc3362e37528 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Nf59508902af9448498d0ee017d9a3270 rdf:first sg:person.01066441075.25
74 rdf:rest N88797ef62be24a8e99f307e167474c43
75 Nf89c9a3f4e3a4ea898d586aa65ed836b schema:name readcube_id
76 schema:value c242c16080219832159aa39377874e2c5435b529dd5d43a10108b28907933494
77 rdf:type schema:PropertyValue
78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
79 schema:name Engineering
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
82 schema:name Chemical Engineering
83 rdf:type schema:DefinedTerm
84 sg:journal.1136087 schema:issn 0965-5441
85 1555-6239
86 schema:name Petroleum Chemistry
87 rdf:type schema:Periodical
88 sg:person.01066441075.25 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
89 schema:familyName Budd
90 schema:givenName P. M.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066441075.25
92 rdf:type schema:Person
93 sg:person.011075136212.72 schema:affiliation https://www.grid.ac/institutes/grid.423490.8
94 schema:familyName Borisov
95 schema:givenName I. L.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011075136212.72
97 rdf:type schema:Person
98 sg:person.012655354565.76 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
99 schema:familyName Volkov
100 schema:givenName A. V.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012655354565.76
102 rdf:type schema:Person
103 sg:person.013301711627.81 schema:affiliation https://www.grid.ac/institutes/grid.423490.8
104 schema:familyName Bazhenov
105 schema:givenName S. D.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301711627.81
107 rdf:type schema:Person
108 sg:person.013672626460.99 schema:affiliation https://www.grid.ac/institutes/grid.423490.8
109 schema:familyName Anokhina
110 schema:givenName T. S.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013672626460.99
112 rdf:type schema:Person
113 sg:pub.10.1134/s0965545x08040135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049498589
114 https://doi.org/10.1134/s0965545x08040135
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/adma.200306053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000852444
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/jssc.200800556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031786383
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.cbi.2009.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016548585
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.ceramint.2016.06.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033238618
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.jcis.2016.12.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052994286
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.jms.2016.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013237295
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.memsci.2006.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038550659
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.memsci.2008.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016749647
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.memsci.2009.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032098445
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.memsci.2012.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030538733
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.memsci.2012.07.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025916206
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.memsci.2017.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083694644
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.reactfunctpolym.2014.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047433122
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.seppur.2015.10.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030086800
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.snb.2016.08.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019587813
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.snb.2018.01.205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100739164
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s1001-0742(08)62150-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023291982
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/cr500006j schema:sameAs https://app.dimensions.ai/details/publication/pub.1045146786
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1021/ma801858d schema:sameAs https://app.dimensions.ai/details/publication/pub.1050651588
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.423490.8 schema:alternateName A.V.Topchiev Institute of Petrochemical Synthesis
155 schema:name A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences, Moscow, Russia
156 rdf:type schema:Organization
157 https://www.grid.ac/institutes/grid.5379.8 schema:alternateName University of Manchester
158 schema:name School of Chemistry, The University of Manchester, Manchester, UK
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...