Novel Membrane Material Based on Polybutadiene and Polydimethylsiloxane for Gas Separation and Hydrophobic Pervaporation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

I. L. Borisov, E. A. Grushevenko, I. A. Podtynnikov, D. S. Bakhtin, G. N. Bondarenko

ABSTRACT

A method is proposed for the synthesis of new membrane materials based on polydimethylsiloxane (PDMS) and polybutadiene (PB). It has been shown that all components of the mixture completely enter into the hydrosilylation reaction and form a chemically crosslinked composite material. It has been found that in the region of low PB concentrations, the composite has a less crosslinked and dense structure. The gas transport properties of the synthesized materials have been experimentally investigated. The proposed materials have higher selectivity for organic components than the industrially used membrane polymer PDMS, which is determined by their high sorption selectivity. A membrane containing 17 wt % PB has enhanced fluxes of organic components and an increased separation factor for all alcohols (ethanol, n-propanol, and n-butanol) examined relative to those of the PDMS membrane in the pervaporative separation of water–alcohol solutions. At the same time, the ethanol–water permselectivity of such a membrane is greater than 1, a value that has been first achieved by modifying PDMS with polymers. Materials of this type have a great potential for the creation of membranes with high permeability and selectivity in the recovery of volatile organic compounds from aqueous media. More... »

PAGES

1113-1122

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544118130042

DOI

http://dx.doi.org/10.1134/s0965544118130042

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111365437


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borisov", 
        "givenName": "I. L.", 
        "id": "sg:person.011075136212.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011075136212.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grushevenko", 
        "givenName": "E. A.", 
        "id": "sg:person.011755064027.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755064027.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Podtynnikov", 
        "givenName": "I. A.", 
        "id": "sg:person.015116062304.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015116062304.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bakhtin", 
        "givenName": "D. S.", 
        "id": "sg:person.012255336067.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012255336067.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bondarenko", 
        "givenName": "G. N.", 
        "id": "sg:person.016522422357.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522422357.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00542-009-0930-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037991199", 
          "https://doi.org/10.1007/s00542-009-0930-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1295/polymj.19.747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022371459", 
          "https://doi.org/10.1295/polymj.19.747"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "A method is proposed for the synthesis of new membrane materials based on polydimethylsiloxane (PDMS) and polybutadiene (PB). It has been shown that all components of the mixture completely enter into the hydrosilylation reaction and form a chemically crosslinked composite material. It has been found that in the region of low PB concentrations, the composite has a less crosslinked and dense structure. The gas transport properties of the synthesized materials have been experimentally investigated. The proposed materials have higher selectivity for organic components than the industrially used membrane polymer PDMS, which is determined by their high sorption selectivity. A membrane containing 17 wt % PB has enhanced fluxes of organic components and an increased separation factor for all alcohols (ethanol, n-propanol, and n-butanol) examined relative to those of the PDMS membrane in the pervaporative separation of water\u2013alcohol solutions. At the same time, the ethanol\u2013water permselectivity of such a membrane is greater than 1, a value that has been first achieved by modifying PDMS with polymers. Materials of this type have a great potential for the creation of membranes with high permeability and selectivity in the recovery of volatile organic compounds from aqueous media.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965544118130042", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6959480", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "13", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "keywords": [
      "organic components", 
      "high sorption selectivity", 
      "water-alcohol solutions", 
      "creation of membranes", 
      "gas transport properties", 
      "new membrane materials", 
      "volatile organic compounds", 
      "hydrosilylation reaction", 
      "sorption selectivity", 
      "gas separation", 
      "aqueous media", 
      "organic compounds", 
      "high selectivity", 
      "separation factor", 
      "pervaporative separation", 
      "hydrophobic pervaporation", 
      "composite materials", 
      "membrane material", 
      "polymer polydimethylsiloxane", 
      "PDMS membrane", 
      "polybutadiene", 
      "polydimethylsiloxane", 
      "Material Based", 
      "selectivity", 
      "dense structure", 
      "high permeability", 
      "transport properties", 
      "great potential", 
      "separation", 
      "materials", 
      "polymers", 
      "permselectivity", 
      "pervaporation", 
      "composites", 
      "synthesis", 
      "compounds", 
      "reaction", 
      "membrane", 
      "mixture", 
      "low Pb concentrations", 
      "alcohol", 
      "properties", 
      "flux", 
      "Pb concentrations", 
      "solution", 
      "wt", 
      "structure", 
      "components", 
      "permeability", 
      "same time", 
      "Based", 
      "concentration", 
      "potential", 
      "medium", 
      "recovery", 
      "method", 
      "values", 
      "time", 
      "types", 
      "region", 
      "creation", 
      "factors", 
      "membrane polymer PDMS", 
      "ethanol\u2013water permselectivity", 
      "Novel Membrane Material Based", 
      "Membrane Material Based"
    ], 
    "name": "Novel Membrane Material Based on Polybutadiene and Polydimethylsiloxane for Gas Separation and Hydrophobic Pervaporation", 
    "pagination": "1113-1122", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111365437"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544118130042"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544118130042", 
      "https://app.dimensions.ai/details/publication/pub.1111365437"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_783.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965544118130042"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544118130042'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544118130042'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544118130042'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544118130042'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      22 PREDICATES      95 URIs      84 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544118130042 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 anzsrc-for:0912
4 schema:author N44ead2f9f220415aaaf75eb2c2341335
5 schema:citation sg:pub.10.1007/s00542-009-0930-2
6 sg:pub.10.1295/polymj.19.747
7 schema:datePublished 2018-12
8 schema:datePublishedReg 2018-12-01
9 schema:description A method is proposed for the synthesis of new membrane materials based on polydimethylsiloxane (PDMS) and polybutadiene (PB). It has been shown that all components of the mixture completely enter into the hydrosilylation reaction and form a chemically crosslinked composite material. It has been found that in the region of low PB concentrations, the composite has a less crosslinked and dense structure. The gas transport properties of the synthesized materials have been experimentally investigated. The proposed materials have higher selectivity for organic components than the industrially used membrane polymer PDMS, which is determined by their high sorption selectivity. A membrane containing 17 wt % PB has enhanced fluxes of organic components and an increased separation factor for all alcohols (ethanol, n-propanol, and n-butanol) examined relative to those of the PDMS membrane in the pervaporative separation of water–alcohol solutions. At the same time, the ethanol–water permselectivity of such a membrane is greater than 1, a value that has been first achieved by modifying PDMS with polymers. Materials of this type have a great potential for the creation of membranes with high permeability and selectivity in the recovery of volatile organic compounds from aqueous media.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N193c66dd76254141ab42c8fa1a977bfe
14 N2a7d28380a6642298ae572520896507a
15 sg:journal.1136087
16 schema:keywords Based
17 Material Based
18 Membrane Material Based
19 Novel Membrane Material Based
20 PDMS membrane
21 Pb concentrations
22 alcohol
23 aqueous media
24 components
25 composite materials
26 composites
27 compounds
28 concentration
29 creation
30 creation of membranes
31 dense structure
32 ethanol–water permselectivity
33 factors
34 flux
35 gas separation
36 gas transport properties
37 great potential
38 high permeability
39 high selectivity
40 high sorption selectivity
41 hydrophobic pervaporation
42 hydrosilylation reaction
43 low Pb concentrations
44 materials
45 medium
46 membrane
47 membrane material
48 membrane polymer PDMS
49 method
50 mixture
51 new membrane materials
52 organic components
53 organic compounds
54 permeability
55 permselectivity
56 pervaporation
57 pervaporative separation
58 polybutadiene
59 polydimethylsiloxane
60 polymer polydimethylsiloxane
61 polymers
62 potential
63 properties
64 reaction
65 recovery
66 region
67 same time
68 selectivity
69 separation
70 separation factor
71 solution
72 sorption selectivity
73 structure
74 synthesis
75 time
76 transport properties
77 types
78 values
79 volatile organic compounds
80 water-alcohol solutions
81 wt
82 schema:name Novel Membrane Material Based on Polybutadiene and Polydimethylsiloxane for Gas Separation and Hydrophobic Pervaporation
83 schema:pagination 1113-1122
84 schema:productId N3ff5b3bf54154a8aa69802c43b4198b2
85 N82e096af5c1d4a08b2936e2f38d268dd
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111365437
87 https://doi.org/10.1134/s0965544118130042
88 schema:sdDatePublished 2022-01-01T18:50
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher Nada3b83f167d40ff8f7a3400ab8c4656
91 schema:url https://doi.org/10.1134/s0965544118130042
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N193c66dd76254141ab42c8fa1a977bfe schema:volumeNumber 58
96 rdf:type schema:PublicationVolume
97 N2a7d28380a6642298ae572520896507a schema:issueNumber 13
98 rdf:type schema:PublicationIssue
99 N3ff5b3bf54154a8aa69802c43b4198b2 schema:name dimensions_id
100 schema:value pub.1111365437
101 rdf:type schema:PropertyValue
102 N44ead2f9f220415aaaf75eb2c2341335 rdf:first sg:person.011075136212.72
103 rdf:rest N7b86ebedfc144bdab331e09a6a65c840
104 N7b86ebedfc144bdab331e09a6a65c840 rdf:first sg:person.011755064027.24
105 rdf:rest Na0b1cab1e801455c9fc9d62b26aafa55
106 N82e096af5c1d4a08b2936e2f38d268dd schema:name doi
107 schema:value 10.1134/s0965544118130042
108 rdf:type schema:PropertyValue
109 Na0b1cab1e801455c9fc9d62b26aafa55 rdf:first sg:person.015116062304.62
110 rdf:rest Nf6264ada25154b058bae1e2c5cc429d3
111 Na69d4b727ff14ba19d83e6ceca130a00 rdf:first sg:person.016522422357.89
112 rdf:rest rdf:nil
113 Nada3b83f167d40ff8f7a3400ab8c4656 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nf6264ada25154b058bae1e2c5cc429d3 rdf:first sg:person.012255336067.83
116 rdf:rest Na69d4b727ff14ba19d83e6ceca130a00
117 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
118 schema:name Engineering
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
121 schema:name Chemical Engineering
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
124 schema:name Materials Engineering
125 rdf:type schema:DefinedTerm
126 sg:grant.6959480 http://pending.schema.org/fundedItem sg:pub.10.1134/s0965544118130042
127 rdf:type schema:MonetaryGrant
128 sg:journal.1136087 schema:issn 0965-5441
129 1555-6239
130 schema:name Petroleum Chemistry
131 schema:publisher Pleiades Publishing
132 rdf:type schema:Periodical
133 sg:person.011075136212.72 schema:affiliation grid-institutes:grid.423490.8
134 schema:familyName Borisov
135 schema:givenName I. L.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011075136212.72
137 rdf:type schema:Person
138 sg:person.011755064027.24 schema:affiliation grid-institutes:grid.423490.8
139 schema:familyName Grushevenko
140 schema:givenName E. A.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755064027.24
142 rdf:type schema:Person
143 sg:person.012255336067.83 schema:affiliation grid-institutes:grid.423490.8
144 schema:familyName Bakhtin
145 schema:givenName D. S.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012255336067.83
147 rdf:type schema:Person
148 sg:person.015116062304.62 schema:affiliation grid-institutes:grid.423490.8
149 schema:familyName Podtynnikov
150 schema:givenName I. A.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015116062304.62
152 rdf:type schema:Person
153 sg:person.016522422357.89 schema:affiliation grid-institutes:grid.423490.8
154 schema:familyName Bondarenko
155 schema:givenName G. N.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522422357.89
157 rdf:type schema:Person
158 sg:pub.10.1007/s00542-009-0930-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037991199
159 https://doi.org/10.1007/s00542-009-0930-2
160 rdf:type schema:CreativeWork
161 sg:pub.10.1295/polymj.19.747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022371459
162 https://doi.org/10.1295/polymj.19.747
163 rdf:type schema:CreativeWork
164 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
165 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...