Influence of the Binder Type on the Properties of Nanocrystalline Zeolite Beta-Based Catalysts for Benzene Alkylation with Propylene View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

T. O. Bok, E. P. Andriako, E. E. Knyazeva, S. V. Konnov, I. I. Ivanova

ABSTRACT

The effect of different binders (aluminum hydroxide (sample K-1), silica gel (sample K-2), pseudoboehmite (sample K-3), a kaolin–silica sol mixture (sample K-4), and a kaolin–aluminum hydroxide mixture (sample K-5)) on the set of the textural, acidic, and catalytic properties of catalysts based on nanocrystalline zeolite Beta has been studied. It has been shown that the introduction of aluminum hydroxide, silica gel, and a kaolin–aluminum hydroxide mixture as binders does not lead to the blocking of the pore structure of the zeolite, while the introduction of pseudoboehmite and a kaolin–silica sol mixture into the catalyst composition leads to a decrease in the micropore volume. Using the NH3 TPD method, it has been found that the use of aluminum hydroxide, pseudoboehmite, and a kaolin–aluminum hydroxide mixture as a binder leads to an increase in the number of acid sites of the catalyst compared with the respective parameter of the original BEA-25 zeolite. The observed changes are attributed to the migration of aluminum from the binder to the zeolite structure to form new acid sites, as evidenced by 27Al MAS NMR data. It has been assumed that an increase in acidity for the K-4 sample is associated with the interaction of silica with the extra-framework aluminum of the Beta zeolite. With respect to activity in the benzene alkylation with propylene, the catalysts can be arranged in the following order: K-1 > K-3 > K-2 > K-5 ≈ BEA > K-4, which correlates with the number of acid sites in the samples. The best process parameters have been achieved in the presence of the K-1 sample exhibiting a stable on-stream behavior for 10 h and providing a selectivity for alkylation products (cumene + DIPB) of 99.7% and a cumene selectivity of 89.7 wt % at 100% propylene conversion. More... »

PAGES

833-840

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544118100195

DOI

http://dx.doi.org/10.1134/s0965544118100195

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107349868


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "A.V.Topchiev Institute of Petrochemical Synthesis", 
          "id": "https://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bok", 
        "givenName": "T. O.", 
        "id": "sg:person.016350200733.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016350200733.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
            "Mendeleev University of Chemical Technology of Russia, Higher Chemical College, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andriako", 
        "givenName": "E. P.", 
        "id": "sg:person.010516023054.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010516023054.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
            "Faculty of Chemistry, Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knyazeva", 
        "givenName": "E. E.", 
        "id": "sg:person.012256620625.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012256620625.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V.Topchiev Institute of Petrochemical Synthesis", 
          "id": "https://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konnov", 
        "givenName": "S. V.", 
        "id": "sg:person.010050637603.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010050637603.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
            "Faculty of Chemistry, Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ivanova", 
        "givenName": "I. I.", 
        "id": "sg:person.0617673445.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617673445.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1381-1169(99)00357-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004266391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-9834(91)85037-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006870958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-6513(96)00037-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011254419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-1317(99)00058-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011873450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcat.2000.2849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019246017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9517(85)90195-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023540321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9517(73)90133-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025658517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-6513(96)00042-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026656377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9517(90)90116-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037163595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9517(88)90200-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040042274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clay.2012.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046367215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9517(91)90248-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048466460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micromeso.2010.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049804607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3cy20866d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050687450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcat.1995.1283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052480734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie001133w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055595288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie001133w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055595288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00338a023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055724621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544116120021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083740957", 
          "https://doi.org/10.1134/s0965544116120021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544116120021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083740957", 
          "https://doi.org/10.1134/s0965544116120021"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The effect of different binders (aluminum hydroxide (sample K-1), silica gel (sample K-2), pseudoboehmite (sample K-3), a kaolin\u2013silica sol mixture (sample K-4), and a kaolin\u2013aluminum hydroxide mixture (sample K-5)) on the set of the textural, acidic, and catalytic properties of catalysts based on nanocrystalline zeolite Beta has been studied. It has been shown that the introduction of aluminum hydroxide, silica gel, and a kaolin\u2013aluminum hydroxide mixture as binders does not lead to the blocking of the pore structure of the zeolite, while the introduction of pseudoboehmite and a kaolin\u2013silica sol mixture into the catalyst composition leads to a decrease in the micropore volume. Using the NH3 TPD method, it has been found that the use of aluminum hydroxide, pseudoboehmite, and a kaolin\u2013aluminum hydroxide mixture as a binder leads to an increase in the number of acid sites of the catalyst compared with the respective parameter of the original BEA-25 zeolite. The observed changes are attributed to the migration of aluminum from the binder to the zeolite structure to form new acid sites, as evidenced by 27Al MAS NMR data. It has been assumed that an increase in acidity for the K-4 sample is associated with the interaction of silica with the extra-framework aluminum of the Beta zeolite. With respect to activity in the benzene alkylation with propylene, the catalysts can be arranged in the following order: K-1 > K-3 > K-2 > K-5 \u2248 BEA > K-4, which correlates with the number of acid sites in the samples. The best process parameters have been achieved in the presence of the K-1 sample exhibiting a stable on-stream behavior for 10 h and providing a selectivity for alkylation products (cumene + DIPB) of 99.7% and a cumene selectivity of 89.7 wt % at 100% propylene conversion.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0965544118100195", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Influence of the Binder Type on the Properties of Nanocrystalline Zeolite Beta-Based Catalysts for Benzene Alkylation with Propylene", 
    "pagination": "833-840", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ee8fea57b4b7952b2c1ecae6087c9cb9e04d0928bf84a1bde28e09bf712d3296"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544118100195"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107349868"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544118100195", 
      "https://app.dimensions.ai/details/publication/pub.1107349868"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000609.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0965544118100195"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544118100195'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544118100195'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544118100195'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544118100195'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544118100195 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nccb0a3e45bd54197a7cc83cdd710450a
4 schema:citation sg:pub.10.1134/s0965544116120021
5 https://doi.org/10.1006/jcat.1995.1283
6 https://doi.org/10.1006/jcat.2000.2849
7 https://doi.org/10.1016/0021-9517(73)90133-4
8 https://doi.org/10.1016/0021-9517(85)90195-2
9 https://doi.org/10.1016/0021-9517(88)90200-x
10 https://doi.org/10.1016/0021-9517(90)90116-2
11 https://doi.org/10.1016/0021-9517(91)90248-3
12 https://doi.org/10.1016/0166-9834(91)85037-v
13 https://doi.org/10.1016/0927-6513(96)00037-5
14 https://doi.org/10.1016/0927-6513(96)00042-9
15 https://doi.org/10.1016/j.clay.2012.09.019
16 https://doi.org/10.1016/j.micromeso.2010.09.011
17 https://doi.org/10.1016/s0169-1317(99)00058-7
18 https://doi.org/10.1016/s1381-1169(99)00357-x
19 https://doi.org/10.1021/ie001133w
20 https://doi.org/10.1021/ja00338a023
21 https://doi.org/10.1039/c3cy20866d
22 schema:datePublished 2018-12
23 schema:datePublishedReg 2018-12-01
24 schema:description The effect of different binders (aluminum hydroxide (sample K-1), silica gel (sample K-2), pseudoboehmite (sample K-3), a kaolin–silica sol mixture (sample K-4), and a kaolin–aluminum hydroxide mixture (sample K-5)) on the set of the textural, acidic, and catalytic properties of catalysts based on nanocrystalline zeolite Beta has been studied. It has been shown that the introduction of aluminum hydroxide, silica gel, and a kaolin–aluminum hydroxide mixture as binders does not lead to the blocking of the pore structure of the zeolite, while the introduction of pseudoboehmite and a kaolin–silica sol mixture into the catalyst composition leads to a decrease in the micropore volume. Using the NH3 TPD method, it has been found that the use of aluminum hydroxide, pseudoboehmite, and a kaolin–aluminum hydroxide mixture as a binder leads to an increase in the number of acid sites of the catalyst compared with the respective parameter of the original BEA-25 zeolite. The observed changes are attributed to the migration of aluminum from the binder to the zeolite structure to form new acid sites, as evidenced by 27Al MAS NMR data. It has been assumed that an increase in acidity for the K-4 sample is associated with the interaction of silica with the extra-framework aluminum of the Beta zeolite. With respect to activity in the benzene alkylation with propylene, the catalysts can be arranged in the following order: K-1 > K-3 > K-2 > K-5 ≈ BEA > K-4, which correlates with the number of acid sites in the samples. The best process parameters have been achieved in the presence of the K-1 sample exhibiting a stable on-stream behavior for 10 h and providing a selectivity for alkylation products (cumene + DIPB) of 99.7% and a cumene selectivity of 89.7 wt % at 100% propylene conversion.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N17e4e265b0e54bbe96011721fd688334
29 N42e718fc5d484115b5282b8580cf761c
30 sg:journal.1136087
31 schema:name Influence of the Binder Type on the Properties of Nanocrystalline Zeolite Beta-Based Catalysts for Benzene Alkylation with Propylene
32 schema:pagination 833-840
33 schema:productId N51335c359f7847b2926c8441cf331a57
34 Ndce1c2f14d164722aea5d7cc47dfe1c7
35 Ne6418e33d8b141d08176229396e72d17
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107349868
37 https://doi.org/10.1134/s0965544118100195
38 schema:sdDatePublished 2019-04-10T13:33
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nb6b1d554ada440de8791412759de43dd
41 schema:url https://link.springer.com/10.1134%2FS0965544118100195
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N17e4e265b0e54bbe96011721fd688334 schema:volumeNumber 58
46 rdf:type schema:PublicationVolume
47 N19011e2ded8744ec83275c4c25543b95 rdf:first sg:person.010516023054.58
48 rdf:rest Ncbf58c59469d4afca85975585a85f0cb
49 N42e718fc5d484115b5282b8580cf761c schema:issueNumber 10
50 rdf:type schema:PublicationIssue
51 N483b46424b3d40a59afc3cb5d6be17e7 rdf:first sg:person.0617673445.01
52 rdf:rest rdf:nil
53 N51335c359f7847b2926c8441cf331a57 schema:name readcube_id
54 schema:value ee8fea57b4b7952b2c1ecae6087c9cb9e04d0928bf84a1bde28e09bf712d3296
55 rdf:type schema:PropertyValue
56 N8af3fc23369d4b9ca02cbd6299ca470d rdf:first sg:person.010050637603.48
57 rdf:rest N483b46424b3d40a59afc3cb5d6be17e7
58 Nb6b1d554ada440de8791412759de43dd schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Ncbf58c59469d4afca85975585a85f0cb rdf:first sg:person.012256620625.82
61 rdf:rest N8af3fc23369d4b9ca02cbd6299ca470d
62 Nccb0a3e45bd54197a7cc83cdd710450a rdf:first sg:person.016350200733.49
63 rdf:rest N19011e2ded8744ec83275c4c25543b95
64 Ndce1c2f14d164722aea5d7cc47dfe1c7 schema:name dimensions_id
65 schema:value pub.1107349868
66 rdf:type schema:PropertyValue
67 Ne6418e33d8b141d08176229396e72d17 schema:name doi
68 schema:value 10.1134/s0965544118100195
69 rdf:type schema:PropertyValue
70 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
71 schema:name Chemical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
74 schema:name Physical Chemistry (incl. Structural)
75 rdf:type schema:DefinedTerm
76 sg:journal.1136087 schema:issn 0965-5441
77 1555-6239
78 schema:name Petroleum Chemistry
79 rdf:type schema:Periodical
80 sg:person.010050637603.48 schema:affiliation https://www.grid.ac/institutes/grid.423490.8
81 schema:familyName Konnov
82 schema:givenName S. V.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010050637603.48
84 rdf:type schema:Person
85 sg:person.010516023054.58 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
86 schema:familyName Andriako
87 schema:givenName E. P.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010516023054.58
89 rdf:type schema:Person
90 sg:person.012256620625.82 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
91 schema:familyName Knyazeva
92 schema:givenName E. E.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012256620625.82
94 rdf:type schema:Person
95 sg:person.016350200733.49 schema:affiliation https://www.grid.ac/institutes/grid.423490.8
96 schema:familyName Bok
97 schema:givenName T. O.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016350200733.49
99 rdf:type schema:Person
100 sg:person.0617673445.01 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
101 schema:familyName Ivanova
102 schema:givenName I. I.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617673445.01
104 rdf:type schema:Person
105 sg:pub.10.1134/s0965544116120021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083740957
106 https://doi.org/10.1134/s0965544116120021
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1006/jcat.1995.1283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052480734
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1006/jcat.2000.2849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019246017
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0021-9517(73)90133-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025658517
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0021-9517(85)90195-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023540321
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0021-9517(88)90200-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040042274
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0021-9517(90)90116-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037163595
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0021-9517(91)90248-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048466460
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0166-9834(91)85037-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1006870958
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0927-6513(96)00037-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011254419
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0927-6513(96)00042-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026656377
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.clay.2012.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046367215
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.micromeso.2010.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049804607
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0169-1317(99)00058-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011873450
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s1381-1169(99)00357-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004266391
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1021/ie001133w schema:sameAs https://app.dimensions.ai/details/publication/pub.1055595288
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1021/ja00338a023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055724621
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1039/c3cy20866d schema:sameAs https://app.dimensions.ai/details/publication/pub.1050687450
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
143 schema:name Faculty of Chemistry, Moscow State University, Moscow, Russia
144 Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
145 rdf:type schema:Organization
146 https://www.grid.ac/institutes/grid.423490.8 schema:alternateName A.V.Topchiev Institute of Petrochemical Synthesis
147 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
148 rdf:type schema:Organization
149 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
150 schema:name Mendeleev University of Chemical Technology of Russia, Higher Chemical College, Russian Academy of Sciences, Moscow, Russia
151 Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...