Stabilization of Gas Transport Properties of Composite Membranes with a Thin PTMSP Selective Layer by Adding Porous Aromatic Framework Nanoparticles ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08-15

AUTHORS

D. S. Bakhtin, L. A. Kulikov, G. N. Bondarenko, V. P. Vasilevskii, A. L. Maksimov, A. V. Volkov

ABSTRACT

Composite membranes with a thin selective layer based on poly[1-trimethylsilyl-1-propyne] (PTMSP) and crosslinked PTMSP containing 10 wt % of nanoparticles of porous aromatic frameworks (PAF-11) have been synthesized and studied. Monitoring of changes in the gas transport characteristics of the membranes under ambient conditions for 7500 h has revealed that for all the samples, the transport characteristics abruptly decrease within the first 1000–2000 h; after that, the mass transfer constants gradually change over time. In the case of a composite membrane with the selective layer based on crosslinked PTMSP and PAF-11 nanoparticles, stable permeability values after 7000 h are 2.1, 3.5, and 12.9 m3/(m2 h atm) for N2, O2, and CO2,respectively (at an ideal selectivity of α(O2/N2) = 1.6 and α(CO2/N2) = 6.1); to date, this is the best published result for thin-film composite membranes based on highly permeable glassy polymers. More... »

PAGES

790-796

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544118090037

DOI

http://dx.doi.org/10.1134/s0965544118090037

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106174770


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bakhtin", 
        "givenName": "D. S.", 
        "id": "sg:person.012255336067.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012255336067.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Chemistry, Moscow State University, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Faculty of Chemistry, Moscow State University, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kulikov", 
        "givenName": "L. A.", 
        "id": "sg:person.015326476771.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015326476771.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bondarenko", 
        "givenName": "G. N.", 
        "id": "sg:person.016522422357.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522422357.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasilevskii", 
        "givenName": "V. P.", 
        "id": "sg:person.012346413177.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012346413177.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Chemistry, Moscow State University, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
            "Faculty of Chemistry, Moscow State University, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maksimov", 
        "givenName": "A. L.", 
        "id": "sg:person.07570312367.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07570312367.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Volkov", 
        "givenName": "A. V.", 
        "id": "sg:person.012655354565.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012655354565.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0965544117060032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086008413", 
          "https://doi.org/10.1134/s0965544117060032"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-15", 
    "datePublishedReg": "2018-08-15", 
    "description": "Composite membranes with a thin selective layer based on poly[1-trimethylsilyl-1-propyne] (PTMSP) and crosslinked PTMSP containing 10 wt % of nanoparticles of porous aromatic frameworks (PAF-11) have been synthesized and studied. Monitoring of changes in the gas transport characteristics of the membranes under ambient conditions for 7500 h has revealed that for all the samples, the transport characteristics abruptly decrease within the first 1000\u20132000 h; after that, the mass transfer constants gradually change over time. In the case of a composite membrane with the selective layer based on crosslinked PTMSP and PAF-11 nanoparticles, stable permeability values after 7000 h are 2.1, 3.5, and 12.9 m3/(m2 h atm) for N2, O2, and CO2,respectively (at an ideal selectivity of \u03b1(O2/N2) = 1.6 and \u03b1(CO2/N2) = 6.1); to date, this is the best published result for thin-film composite membranes based on highly permeable glassy polymers.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965544118090037", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "keywords": [
      "composite membranes", 
      "selective layer", 
      "thin-film composite membranes", 
      "thin selective layer", 
      "permeable glassy polymers", 
      "gas transport characteristics", 
      "mass transfer constants", 
      "gas transport properties", 
      "transport characteristics", 
      "porous aromatic frameworks", 
      "framework nanoparticles", 
      "polymer crosslinking", 
      "aromatic frameworks", 
      "glassy polymers", 
      "transport properties", 
      "permeability values", 
      "nanoparticles", 
      "ambient conditions", 
      "PTMSP", 
      "layer", 
      "transfer constants", 
      "monitoring of changes", 
      "polymers", 
      "crosslinking", 
      "characteristics", 
      "membrane", 
      "N2", 
      "O2", 
      "properties", 
      "constants", 
      "monitoring", 
      "conditions", 
      "stabilization", 
      "samples", 
      "results", 
      "values", 
      "time", 
      "framework", 
      "cases", 
      "changes", 
      "date", 
      "stable permeability values", 
      "Thin PTMSP Selective Layer", 
      "PTMSP Selective Layer", 
      "Porous Aromatic Framework Nanoparticles", 
      "Aromatic Framework Nanoparticles", 
      "Simultaneous Polymer Crosslinking"
    ], 
    "name": "Stabilization of Gas Transport Properties of Composite Membranes with a Thin PTMSP Selective Layer by Adding Porous Aromatic Framework Nanoparticles and Simultaneous Polymer Crosslinking", 
    "pagination": "790-796", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106174770"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544118090037"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544118090037", 
      "https://app.dimensions.ai/details/publication/pub.1106174770"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_777.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965544118090037"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544118090037'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544118090037'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544118090037'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544118090037'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      22 PREDICATES      73 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544118090037 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nacf13e3674e94a5c9326fa2eec33505f
4 schema:citation sg:pub.10.1134/s0965544117060032
5 schema:datePublished 2018-08-15
6 schema:datePublishedReg 2018-08-15
7 schema:description Composite membranes with a thin selective layer based on poly[1-trimethylsilyl-1-propyne] (PTMSP) and crosslinked PTMSP containing 10 wt % of nanoparticles of porous aromatic frameworks (PAF-11) have been synthesized and studied. Monitoring of changes in the gas transport characteristics of the membranes under ambient conditions for 7500 h has revealed that for all the samples, the transport characteristics abruptly decrease within the first 1000–2000 h; after that, the mass transfer constants gradually change over time. In the case of a composite membrane with the selective layer based on crosslinked PTMSP and PAF-11 nanoparticles, stable permeability values after 7000 h are 2.1, 3.5, and 12.9 m3/(m2 h atm) for N2, O2, and CO2,respectively (at an ideal selectivity of α(O2/N2) = 1.6 and α(CO2/N2) = 6.1); to date, this is the best published result for thin-film composite membranes based on highly permeable glassy polymers.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N4bcdf5e2c4674eb5984b1a5acc0bce72
12 N764d836622f445b3ab1942cca7634be5
13 sg:journal.1136087
14 schema:keywords Aromatic Framework Nanoparticles
15 N2
16 O2
17 PTMSP
18 PTMSP Selective Layer
19 Porous Aromatic Framework Nanoparticles
20 Simultaneous Polymer Crosslinking
21 Thin PTMSP Selective Layer
22 ambient conditions
23 aromatic frameworks
24 cases
25 changes
26 characteristics
27 composite membranes
28 conditions
29 constants
30 crosslinking
31 date
32 framework
33 framework nanoparticles
34 gas transport characteristics
35 gas transport properties
36 glassy polymers
37 layer
38 mass transfer constants
39 membrane
40 monitoring
41 monitoring of changes
42 nanoparticles
43 permeability values
44 permeable glassy polymers
45 polymer crosslinking
46 polymers
47 porous aromatic frameworks
48 properties
49 results
50 samples
51 selective layer
52 stabilization
53 stable permeability values
54 thin selective layer
55 thin-film composite membranes
56 time
57 transfer constants
58 transport characteristics
59 transport properties
60 values
61 schema:name Stabilization of Gas Transport Properties of Composite Membranes with a Thin PTMSP Selective Layer by Adding Porous Aromatic Framework Nanoparticles and Simultaneous Polymer Crosslinking
62 schema:pagination 790-796
63 schema:productId N0591a2f296944c78acf7eedfe450e2a6
64 Ncb551e172306479f996080570276f34d
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106174770
66 https://doi.org/10.1134/s0965544118090037
67 schema:sdDatePublished 2021-12-01T19:43
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Nbafb8fab3ea14a3b8b622a51d8dcabee
70 schema:url https://doi.org/10.1134/s0965544118090037
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N0591a2f296944c78acf7eedfe450e2a6 schema:name dimensions_id
75 schema:value pub.1106174770
76 rdf:type schema:PropertyValue
77 N2aba9e22f3b146b2bb9e5f08d7f676a8 rdf:first sg:person.015326476771.79
78 rdf:rest Ndf01b5f125594a7484dbefaf770395cc
79 N4bcdf5e2c4674eb5984b1a5acc0bce72 schema:volumeNumber 58
80 rdf:type schema:PublicationVolume
81 N764d836622f445b3ab1942cca7634be5 schema:issueNumber 9
82 rdf:type schema:PublicationIssue
83 N9c9e3a36b6e5472ab9fbe59a6ec08ace rdf:first sg:person.012346413177.45
84 rdf:rest Nbc7ab974050240ffbac0dd92c701dcc1
85 Nacf13e3674e94a5c9326fa2eec33505f rdf:first sg:person.012255336067.83
86 rdf:rest N2aba9e22f3b146b2bb9e5f08d7f676a8
87 Nbafb8fab3ea14a3b8b622a51d8dcabee schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Nbc7ab974050240ffbac0dd92c701dcc1 rdf:first sg:person.07570312367.72
90 rdf:rest Nf6c7e817d63a4d2c800dcf0fdb02c684
91 Ncb551e172306479f996080570276f34d schema:name doi
92 schema:value 10.1134/s0965544118090037
93 rdf:type schema:PropertyValue
94 Ndf01b5f125594a7484dbefaf770395cc rdf:first sg:person.016522422357.89
95 rdf:rest N9c9e3a36b6e5472ab9fbe59a6ec08ace
96 Nf6c7e817d63a4d2c800dcf0fdb02c684 rdf:first sg:person.012655354565.76
97 rdf:rest rdf:nil
98 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
99 schema:name Engineering
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
102 schema:name Materials Engineering
103 rdf:type schema:DefinedTerm
104 sg:journal.1136087 schema:issn 0965-5441
105 1555-6239
106 schema:name Petroleum Chemistry
107 schema:publisher Pleiades Publishing
108 rdf:type schema:Periodical
109 sg:person.012255336067.83 schema:affiliation grid-institutes:grid.423490.8
110 schema:familyName Bakhtin
111 schema:givenName D. S.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012255336067.83
113 rdf:type schema:Person
114 sg:person.012346413177.45 schema:affiliation grid-institutes:grid.423490.8
115 schema:familyName Vasilevskii
116 schema:givenName V. P.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012346413177.45
118 rdf:type schema:Person
119 sg:person.012655354565.76 schema:affiliation grid-institutes:grid.423490.8
120 schema:familyName Volkov
121 schema:givenName A. V.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012655354565.76
123 rdf:type schema:Person
124 sg:person.015326476771.79 schema:affiliation grid-institutes:grid.14476.30
125 schema:familyName Kulikov
126 schema:givenName L. A.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015326476771.79
128 rdf:type schema:Person
129 sg:person.016522422357.89 schema:affiliation grid-institutes:grid.423490.8
130 schema:familyName Bondarenko
131 schema:givenName G. N.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522422357.89
133 rdf:type schema:Person
134 sg:person.07570312367.72 schema:affiliation grid-institutes:grid.14476.30
135 schema:familyName Maksimov
136 schema:givenName A. L.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07570312367.72
138 rdf:type schema:Person
139 sg:pub.10.1134/s0965544117060032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086008413
140 https://doi.org/10.1134/s0965544117060032
141 rdf:type schema:CreativeWork
142 grid-institutes:grid.14476.30 schema:alternateName Faculty of Chemistry, Moscow State University, 119991, Moscow, Russia
143 schema:name Faculty of Chemistry, Moscow State University, 119991, Moscow, Russia
144 Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
145 rdf:type schema:Organization
146 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
147 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...