Formation of Polycondensation Products in Heavy Oil Feedstock Hydroconversion in the Presence of Ultrafine Catalyst:Physicochemical Study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07

AUTHORS

Kh. M. Kadiev, L. A. Zekel’, M. Kh. Kadieva, S. N. Khadzhiev

ABSTRACT

The formation of polycondensation products in the hydroconversion of heavy oil feedstock is studied in the flow regime in the presence of an in situ synthesized ultrafine catalyst (MoS2). Experiments show that, to a conversion level specific to every feedstock, the coke yield attained by variation in temperature or contact time remains close to zero; subsequently it begins to grow exponentially. The observed regularity is associated with a difference in the rates of reactions involving feedstock components and the presence of coke precursor—asphaltenes—in the feedstock. A relationship is revealed between the amount of formed coke, the content of asphaltenes in the feedstock, and the Hildebrand solubility parameter, which characterizes the ability of the dispersion medium to maintain asphaltenes in the dispersed state without agglomeration. More... »

PAGES

519-527

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544118070034

DOI

http://dx.doi.org/10.1134/s0965544118070034

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105672994


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "A.V.Topchiev Institute of Petrochemical Synthesis", 
          "id": "https://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadiev", 
        "givenName": "Kh. M.", 
        "id": "sg:person.012531050145.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012531050145.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V.Topchiev Institute of Petrochemical Synthesis", 
          "id": "https://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zekel\u2019", 
        "givenName": "L. A.", 
        "id": "sg:person.012733636407.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733636407.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V.Topchiev Institute of Petrochemical Synthesis", 
          "id": "https://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadieva", 
        "givenName": "M. Kh.", 
        "id": "sg:person.010431675375.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431675375.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V.Topchiev Institute of Petrochemical Synthesis", 
          "id": "https://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khadzhiev", 
        "givenName": "S. N.", 
        "id": "sg:person.01332170507.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332170507.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cis.2013.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002812137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544113050113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004135902", 
          "https://doi.org/10.1134/s0965544113050113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcat.2007.02.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007958050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcat.2013.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015511737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-68903-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015743296", 
          "https://doi.org/10.1007/0-387-68903-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-68903-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015743296", 
          "https://doi.org/10.1007/0-387-68903-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcat.2008.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017474831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0926-860x(00)00531-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021924029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fluid.2009.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023809776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2006.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024115294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejpe.2013.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026478084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cattod.2007.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029275295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2cy20448g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031007815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544111060077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032326510", 
          "https://doi.org/10.1134/s0965544111060077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2015.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033992618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cattod.2007.10.105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037542721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10916460601054701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038073823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcat.1994.1308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041840373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544116060050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046427807", 
          "https://doi.org/10.1134/s0965544116060050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544116060050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046427807", 
          "https://doi.org/10.1134/s0965544116060050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544114050065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046453241", 
          "https://doi.org/10.1134/s0965544114050065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fluid.2005.03.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051406675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cattod.2005.08.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051653498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cattod.2005.08.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051653498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544115080137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053328440", 
          "https://doi.org/10.1134/s0965544115080137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cattod.2004.07.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053345400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef00034a019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055474442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef00045a013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055474790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef049956b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055476069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef049956b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055476069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef101230g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055477485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef101230g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055477485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef200703t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055477892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef200703t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055477892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef400623f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055479391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef9602178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055483101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef9602178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055483101"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07", 
    "datePublishedReg": "2018-07-01", 
    "description": "The formation of polycondensation products in the hydroconversion of heavy oil feedstock is studied in the flow regime in the presence of an in situ synthesized ultrafine catalyst (MoS2). Experiments show that, to a conversion level specific to every feedstock, the coke yield attained by variation in temperature or contact time remains close to zero; subsequently it begins to grow exponentially. The observed regularity is associated with a difference in the rates of reactions involving feedstock components and the presence of coke precursor\u2014asphaltenes\u2014in the feedstock. A relationship is revealed between the amount of formed coke, the content of asphaltenes in the feedstock, and the Hildebrand solubility parameter, which characterizes the ability of the dispersion medium to maintain asphaltenes in the dispersed state without agglomeration.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0965544118070034", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Formation of Polycondensation Products in Heavy Oil Feedstock Hydroconversion in the Presence of Ultrafine Catalyst:Physicochemical Study", 
    "pagination": "519-527", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8cd6bbd089860a755991b9c21e50940d0be3db905247b63323e19de4e32a79a0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544118070034"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105672994"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544118070034", 
      "https://app.dimensions.ai/details/publication/pub.1105672994"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000570.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0965544118070034"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544118070034'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544118070034'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544118070034'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544118070034'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544118070034 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N12ea82a185fc4dc293aff98b4021b61e
4 schema:citation sg:pub.10.1007/0-387-68903-6
5 sg:pub.10.1134/s0965544111060077
6 sg:pub.10.1134/s0965544113050113
7 sg:pub.10.1134/s0965544114050065
8 sg:pub.10.1134/s0965544115080137
9 sg:pub.10.1134/s0965544116060050
10 https://doi.org/10.1006/jcat.1994.1308
11 https://doi.org/10.1016/j.cattod.2004.07.054
12 https://doi.org/10.1016/j.cattod.2005.08.025
13 https://doi.org/10.1016/j.cattod.2007.10.005
14 https://doi.org/10.1016/j.cattod.2007.10.105
15 https://doi.org/10.1016/j.cis.2013.05.003
16 https://doi.org/10.1016/j.ejpe.2013.10.006
17 https://doi.org/10.1016/j.fluid.2005.03.029
18 https://doi.org/10.1016/j.fluid.2009.12.010
19 https://doi.org/10.1016/j.fuel.2006.08.004
20 https://doi.org/10.1016/j.fuel.2015.07.012
21 https://doi.org/10.1016/j.jcat.2007.02.028
22 https://doi.org/10.1016/j.jcat.2008.10.005
23 https://doi.org/10.1016/j.jcat.2013.07.002
24 https://doi.org/10.1016/s0926-860x(00)00531-7
25 https://doi.org/10.1021/ef00034a019
26 https://doi.org/10.1021/ef00045a013
27 https://doi.org/10.1021/ef049956b
28 https://doi.org/10.1021/ef101230g
29 https://doi.org/10.1021/ef200703t
30 https://doi.org/10.1021/ef400623f
31 https://doi.org/10.1021/ef9602178
32 https://doi.org/10.1039/c2cy20448g
33 https://doi.org/10.1080/10916460601054701
34 schema:datePublished 2018-07
35 schema:datePublishedReg 2018-07-01
36 schema:description The formation of polycondensation products in the hydroconversion of heavy oil feedstock is studied in the flow regime in the presence of an in situ synthesized ultrafine catalyst (MoS2). Experiments show that, to a conversion level specific to every feedstock, the coke yield attained by variation in temperature or contact time remains close to zero; subsequently it begins to grow exponentially. The observed regularity is associated with a difference in the rates of reactions involving feedstock components and the presence of coke precursor—asphaltenes—in the feedstock. A relationship is revealed between the amount of formed coke, the content of asphaltenes in the feedstock, and the Hildebrand solubility parameter, which characterizes the ability of the dispersion medium to maintain asphaltenes in the dispersed state without agglomeration.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N034df3f779b1468c8e384d254f675f00
41 Naca201cbaaf74b7794f15ba6a9611939
42 sg:journal.1136087
43 schema:name Formation of Polycondensation Products in Heavy Oil Feedstock Hydroconversion in the Presence of Ultrafine Catalyst:Physicochemical Study
44 schema:pagination 519-527
45 schema:productId N29f0bfda1b5e4c34b79f1ed8a38a44a0
46 Nbd78eb6fed754cbea50c4f73af3a836a
47 Nfaef0fe90fb849f1bf688ae43a3d3963
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105672994
49 https://doi.org/10.1134/s0965544118070034
50 schema:sdDatePublished 2019-04-10T20:06
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N9fde765d913448bfa3b552414399f9a8
53 schema:url https://link.springer.com/10.1134%2FS0965544118070034
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N034df3f779b1468c8e384d254f675f00 schema:issueNumber 7
58 rdf:type schema:PublicationIssue
59 N12ea82a185fc4dc293aff98b4021b61e rdf:first sg:person.012531050145.44
60 rdf:rest Nea8bd50c057a4b1a959bd2e3ae6d0101
61 N29f0bfda1b5e4c34b79f1ed8a38a44a0 schema:name readcube_id
62 schema:value 8cd6bbd089860a755991b9c21e50940d0be3db905247b63323e19de4e32a79a0
63 rdf:type schema:PropertyValue
64 N408c037a742342ecaef80386a87a288e rdf:first sg:person.01332170507.75
65 rdf:rest rdf:nil
66 N705607b34bb942f398ed53fcc5d4c242 rdf:first sg:person.010431675375.32
67 rdf:rest N408c037a742342ecaef80386a87a288e
68 N9fde765d913448bfa3b552414399f9a8 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Naca201cbaaf74b7794f15ba6a9611939 schema:volumeNumber 58
71 rdf:type schema:PublicationVolume
72 Nbd78eb6fed754cbea50c4f73af3a836a schema:name dimensions_id
73 schema:value pub.1105672994
74 rdf:type schema:PropertyValue
75 Nea8bd50c057a4b1a959bd2e3ae6d0101 rdf:first sg:person.012733636407.55
76 rdf:rest N705607b34bb942f398ed53fcc5d4c242
77 Nfaef0fe90fb849f1bf688ae43a3d3963 schema:name doi
78 schema:value 10.1134/s0965544118070034
79 rdf:type schema:PropertyValue
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:journal.1136087 schema:issn 0965-5441
87 1555-6239
88 schema:name Petroleum Chemistry
89 rdf:type schema:Periodical
90 sg:person.010431675375.32 schema:affiliation https://www.grid.ac/institutes/grid.423490.8
91 schema:familyName Kadieva
92 schema:givenName M. Kh.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431675375.32
94 rdf:type schema:Person
95 sg:person.012531050145.44 schema:affiliation https://www.grid.ac/institutes/grid.423490.8
96 schema:familyName Kadiev
97 schema:givenName Kh. M.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012531050145.44
99 rdf:type schema:Person
100 sg:person.012733636407.55 schema:affiliation https://www.grid.ac/institutes/grid.423490.8
101 schema:familyName Zekel’
102 schema:givenName L. A.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733636407.55
104 rdf:type schema:Person
105 sg:person.01332170507.75 schema:affiliation https://www.grid.ac/institutes/grid.423490.8
106 schema:familyName Khadzhiev
107 schema:givenName S. N.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332170507.75
109 rdf:type schema:Person
110 sg:pub.10.1007/0-387-68903-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015743296
111 https://doi.org/10.1007/0-387-68903-6
112 rdf:type schema:CreativeWork
113 sg:pub.10.1134/s0965544111060077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032326510
114 https://doi.org/10.1134/s0965544111060077
115 rdf:type schema:CreativeWork
116 sg:pub.10.1134/s0965544113050113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004135902
117 https://doi.org/10.1134/s0965544113050113
118 rdf:type schema:CreativeWork
119 sg:pub.10.1134/s0965544114050065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046453241
120 https://doi.org/10.1134/s0965544114050065
121 rdf:type schema:CreativeWork
122 sg:pub.10.1134/s0965544115080137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053328440
123 https://doi.org/10.1134/s0965544115080137
124 rdf:type schema:CreativeWork
125 sg:pub.10.1134/s0965544116060050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046427807
126 https://doi.org/10.1134/s0965544116060050
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1006/jcat.1994.1308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041840373
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.cattod.2004.07.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053345400
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.cattod.2005.08.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051653498
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.cattod.2007.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029275295
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.cattod.2007.10.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037542721
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.cis.2013.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002812137
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.ejpe.2013.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026478084
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.fluid.2005.03.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051406675
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.fluid.2009.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023809776
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.fuel.2006.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024115294
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.fuel.2015.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033992618
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.jcat.2007.02.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007958050
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.jcat.2008.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017474831
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.jcat.2013.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015511737
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0926-860x(00)00531-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021924029
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1021/ef00034a019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055474442
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/ef00045a013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055474790
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/ef049956b schema:sameAs https://app.dimensions.ai/details/publication/pub.1055476069
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1021/ef101230g schema:sameAs https://app.dimensions.ai/details/publication/pub.1055477485
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1021/ef200703t schema:sameAs https://app.dimensions.ai/details/publication/pub.1055477892
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1021/ef400623f schema:sameAs https://app.dimensions.ai/details/publication/pub.1055479391
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1021/ef9602178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055483101
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1039/c2cy20448g schema:sameAs https://app.dimensions.ai/details/publication/pub.1031007815
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1080/10916460601054701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038073823
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.423490.8 schema:alternateName A.V.Topchiev Institute of Petrochemical Synthesis
177 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...