Hydrotreating of High-Aromatic Waste of Coke and By-Product Processes in the Presence of in Situ Synthesized Sulfide Nanocatalysts View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

I. A. Sizova, D. I. Panyukova, A. L. Maksimov

ABSTRACT

The hydrodearomatization and hydrodesulfurization of the coking resin fraction (below 360°C) in the presence of in situ synthesized Ni–W–S catalysts are studied using tungsten hexacarbonyl W(CO)6 and nickel(II) 2-ethylhexanoate Ni(C7H15COO)2 oil-soluble salts at a molar ratio of W: Ni = 1: 2 as precursors for the Ni–W–S catalysts. The resulting catalysts are characterized by transmission electron microscopy; the formation of agglomerates of nanoparticles with an average diameter of 100–200 nm is shown. The optimum temperature for the hydrotreating of the coking resin (380°C) is determined. More... »

PAGES

1304-1309

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544117140092

DOI

http://dx.doi.org/10.1134/s0965544117140092

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101303208


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sizova", 
        "givenName": "I. A.", 
        "id": "sg:person.07772410325.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07772410325.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panyukova", 
        "givenName": "D. I.", 
        "id": "sg:person.013335646653.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013335646653.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Chemistry, Moscow State University, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
            "Faculty of Chemistry, Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maksimov", 
        "givenName": "A. L.", 
        "id": "sg:person.07570312367.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07570312367.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0965544115080174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035764041", 
          "https://doi.org/10.1134/s0965544115080174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544116060098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034158777", 
          "https://doi.org/10.1134/s0965544116060098"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "The hydrodearomatization and hydrodesulfurization of the coking resin fraction (below 360\u00b0C) in the presence of in situ synthesized Ni\u2013W\u2013S catalysts are studied using tungsten hexacarbonyl W(CO)6 and nickel(II) 2-ethylhexanoate Ni(C7H15COO)2 oil-soluble salts at a molar ratio of W: Ni = 1: 2 as precursors for the Ni\u2013W\u2013S catalysts. The resulting catalysts are characterized by transmission electron microscopy; the formation of agglomerates of nanoparticles with an average diameter of 100\u2013200 nm is shown. The optimum temperature for the hydrotreating of the coking resin (380\u00b0C) is determined.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965544117140092", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "14", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "keywords": [
      "formation of agglomerates", 
      "transmission electron microscopy", 
      "electron microscopy", 
      "average diameter", 
      "product process", 
      "Ni", 
      "hydrotreating", 
      "agglomerates", 
      "tungsten hexacarbonyl", 
      "oil-soluble salt", 
      "waste", 
      "coke", 
      "molar ratio", 
      "resin", 
      "resin fraction", 
      "catalyst", 
      "optimum temperature", 
      "temperature", 
      "nanoparticles", 
      "hydrodearomatization", 
      "microscopy", 
      "situ", 
      "diameter", 
      "process", 
      "nanocatalysts", 
      "ratio", 
      "hydrodesulfurization", 
      "fraction", 
      "salt", 
      "formation", 
      "precursors", 
      "presence", 
      "hexacarbonyl", 
      "coking resin fraction", 
      "coking resin", 
      "High-Aromatic Waste", 
      "Situ Synthesized Sulfide Nanocatalysts", 
      "Synthesized Sulfide Nanocatalysts", 
      "Sulfide Nanocatalysts"
    ], 
    "name": "Hydrotreating of High-Aromatic Waste of Coke and By-Product Processes in the Presence of in Situ Synthesized Sulfide Nanocatalysts", 
    "pagination": "1304-1309", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101303208"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544117140092"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544117140092", 
      "https://app.dimensions.ai/details/publication/pub.1101303208"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_738.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965544117140092"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544117140092'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544117140092'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544117140092'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544117140092'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      22 PREDICATES      67 URIs      57 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544117140092 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author Ndcceefe08e174a2b878dac6ac4b78bea
4 schema:citation sg:pub.10.1134/s0965544115080174
5 sg:pub.10.1134/s0965544116060098
6 schema:datePublished 2017-12
7 schema:datePublishedReg 2017-12-01
8 schema:description The hydrodearomatization and hydrodesulfurization of the coking resin fraction (below 360°C) in the presence of in situ synthesized Ni–W–S catalysts are studied using tungsten hexacarbonyl W(CO)6 and nickel(II) 2-ethylhexanoate Ni(C7H15COO)2 oil-soluble salts at a molar ratio of W: Ni = 1: 2 as precursors for the Ni–W–S catalysts. The resulting catalysts are characterized by transmission electron microscopy; the formation of agglomerates of nanoparticles with an average diameter of 100–200 nm is shown. The optimum temperature for the hydrotreating of the coking resin (380°C) is determined.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Nc22f29a669c9449e86a529d0ca99b839
13 Ncde350f6a668450c984637d899531fb9
14 sg:journal.1136087
15 schema:keywords High-Aromatic Waste
16 Ni
17 Situ Synthesized Sulfide Nanocatalysts
18 Sulfide Nanocatalysts
19 Synthesized Sulfide Nanocatalysts
20 agglomerates
21 average diameter
22 catalyst
23 coke
24 coking resin
25 coking resin fraction
26 diameter
27 electron microscopy
28 formation
29 formation of agglomerates
30 fraction
31 hexacarbonyl
32 hydrodearomatization
33 hydrodesulfurization
34 hydrotreating
35 microscopy
36 molar ratio
37 nanocatalysts
38 nanoparticles
39 oil-soluble salt
40 optimum temperature
41 precursors
42 presence
43 process
44 product process
45 ratio
46 resin
47 resin fraction
48 salt
49 situ
50 temperature
51 transmission electron microscopy
52 tungsten hexacarbonyl
53 waste
54 schema:name Hydrotreating of High-Aromatic Waste of Coke and By-Product Processes in the Presence of in Situ Synthesized Sulfide Nanocatalysts
55 schema:pagination 1304-1309
56 schema:productId N0e3520ef15b644d8b4667d138ae5b19d
57 N51a3232575bb47f289861bd710480ee3
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101303208
59 https://doi.org/10.1134/s0965544117140092
60 schema:sdDatePublished 2021-12-01T19:39
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N60a29ea43619494ba4ff306929801aa7
63 schema:url https://doi.org/10.1134/s0965544117140092
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0e3520ef15b644d8b4667d138ae5b19d schema:name dimensions_id
68 schema:value pub.1101303208
69 rdf:type schema:PropertyValue
70 N1362059a69984bc1ab2235b6e72b6b40 rdf:first sg:person.07570312367.72
71 rdf:rest rdf:nil
72 N1d4d4f6e3a5f4e2b99b7a7b8aa1edb9d rdf:first sg:person.013335646653.08
73 rdf:rest N1362059a69984bc1ab2235b6e72b6b40
74 N51a3232575bb47f289861bd710480ee3 schema:name doi
75 schema:value 10.1134/s0965544117140092
76 rdf:type schema:PropertyValue
77 N60a29ea43619494ba4ff306929801aa7 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nc22f29a669c9449e86a529d0ca99b839 schema:issueNumber 14
80 rdf:type schema:PublicationIssue
81 Ncde350f6a668450c984637d899531fb9 schema:volumeNumber 57
82 rdf:type schema:PublicationVolume
83 Ndcceefe08e174a2b878dac6ac4b78bea rdf:first sg:person.07772410325.17
84 rdf:rest N1d4d4f6e3a5f4e2b99b7a7b8aa1edb9d
85 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
86 schema:name Engineering
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
89 schema:name Chemical Engineering
90 rdf:type schema:DefinedTerm
91 sg:journal.1136087 schema:issn 0965-5441
92 1555-6239
93 schema:name Petroleum Chemistry
94 schema:publisher Pleiades Publishing
95 rdf:type schema:Periodical
96 sg:person.013335646653.08 schema:affiliation grid-institutes:grid.423490.8
97 schema:familyName Panyukova
98 schema:givenName D. I.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013335646653.08
100 rdf:type schema:Person
101 sg:person.07570312367.72 schema:affiliation grid-institutes:grid.14476.30
102 schema:familyName Maksimov
103 schema:givenName A. L.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07570312367.72
105 rdf:type schema:Person
106 sg:person.07772410325.17 schema:affiliation grid-institutes:grid.423490.8
107 schema:familyName Sizova
108 schema:givenName I. A.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07772410325.17
110 rdf:type schema:Person
111 sg:pub.10.1134/s0965544115080174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035764041
112 https://doi.org/10.1134/s0965544115080174
113 rdf:type schema:CreativeWork
114 sg:pub.10.1134/s0965544116060098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034158777
115 https://doi.org/10.1134/s0965544116060098
116 rdf:type schema:CreativeWork
117 grid-institutes:grid.14476.30 schema:alternateName Faculty of Chemistry, Moscow State University, Moscow, Russia
118 schema:name Faculty of Chemistry, Moscow State University, Moscow, Russia
119 Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
120 rdf:type schema:Organization
121 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
122 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...