Application of Zeolite Y-Based Ni–W Supported and In Situ Prepared Catalysts in the Process of Vacuum Gas Oil Hydrocracking View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

M. I. Onishchenko, A. B. Kulikov, A. L. Maksimov

ABSTRACT

The activity of supported and in situ synthesized sulfide Ni–W catalysts based on a low-silicon zeolite Y (SiO2/Al2O3 = 5.2) in the hydrocracking of vacuum gas oil is studied. It is shown that the temperature and time of reaction affect the fractional composition and the sulfur content in conversion products. It is found that the phase of tungsten sulfide as well as the mixed Ni−W−S phase active in hydrogenation are formed on the catalyst surface. It is proposed that an increase in activity for the in situ formed catalyst may be explained by a high content of sulfide phases on the catalyst surface and accessibility of the zeolite pore system. More... »

PAGES

1287-1294

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544117140079

DOI

http://dx.doi.org/10.1134/s0965544117140079

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101303206


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Onishchenko", 
        "givenName": "M. I.", 
        "id": "sg:person.010652323146.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010652323146.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kulikov", 
        "givenName": "A. B.", 
        "id": "sg:person.016171373325.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016171373325.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Chemistry, Moscow State University, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
            "Faculty of Chemistry, Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maksimov", 
        "givenName": "A. L.", 
        "id": "sg:person.07570312367.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07570312367.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s2070050414030076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025513661", 
          "https://doi.org/10.1134/s2070050414030076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544114050065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046453241", 
          "https://doi.org/10.1134/s0965544114050065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544115080174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035764041", 
          "https://doi.org/10.1134/s0965544115080174"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "The activity of supported and in situ synthesized sulfide Ni\u2013W catalysts based on a low-silicon zeolite Y (SiO2/Al2O3 = 5.2) in the hydrocracking of vacuum gas oil is studied. It is shown that the temperature and time of reaction affect the fractional composition and the sulfur content in conversion products. It is found that the phase of tungsten sulfide as well as the mixed Ni\u2212W\u2212S phase active in hydrogenation are formed on the catalyst surface. It is proposed that an increase in activity for the in situ formed catalyst may be explained by a high content of sulfide phases on the catalyst surface and accessibility of the zeolite pore system.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965544117140079", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "14", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "keywords": [
      "Vacuum Gas Oil Hydrocracking", 
      "catalyst surface", 
      "zeolite Y", 
      "zeolite pore system", 
      "vacuum gas oil", 
      "time of reaction", 
      "tungsten sulfide", 
      "gas oil", 
      "oil hydrocracking", 
      "pore system", 
      "catalyst", 
      "sulfide phases", 
      "conversion products", 
      "sulfur content", 
      "hydrocracking", 
      "sulfide Ni", 
      "fractional composition", 
      "surface", 
      "Ni", 
      "situ", 
      "hydrogenation", 
      "phase", 
      "Supported", 
      "high content", 
      "sulfide", 
      "temperature", 
      "reaction", 
      "oil", 
      "content", 
      "applications", 
      "products", 
      "composition", 
      "process", 
      "system", 
      "activity", 
      "increase", 
      "time", 
      "accessibility", 
      "low-silicon zeolite Y", 
      "Gas Oil Hydrocracking"
    ], 
    "name": "Application of Zeolite Y-Based Ni\u2013W Supported and In Situ Prepared Catalysts in the Process of Vacuum Gas Oil Hydrocracking", 
    "pagination": "1287-1294", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101303206"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544117140079"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544117140079", 
      "https://app.dimensions.ai/details/publication/pub.1101303206"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_746.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965544117140079"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544117140079'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544117140079'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544117140079'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544117140079'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      22 PREDICATES      69 URIs      58 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544117140079 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N31a049d021db4301b3c814140c13a0ce
4 schema:citation sg:pub.10.1134/s0965544114050065
5 sg:pub.10.1134/s0965544115080174
6 sg:pub.10.1134/s2070050414030076
7 schema:datePublished 2017-12
8 schema:datePublishedReg 2017-12-01
9 schema:description The activity of supported and in situ synthesized sulfide Ni–W catalysts based on a low-silicon zeolite Y (SiO2/Al2O3 = 5.2) in the hydrocracking of vacuum gas oil is studied. It is shown that the temperature and time of reaction affect the fractional composition and the sulfur content in conversion products. It is found that the phase of tungsten sulfide as well as the mixed Ni−W−S phase active in hydrogenation are formed on the catalyst surface. It is proposed that an increase in activity for the in situ formed catalyst may be explained by a high content of sulfide phases on the catalyst surface and accessibility of the zeolite pore system.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Nc1e7e066344749d9986a47dafc287910
14 Nf5c641bec33944999e75bdbd84595426
15 sg:journal.1136087
16 schema:keywords Gas Oil Hydrocracking
17 Ni
18 Supported
19 Vacuum Gas Oil Hydrocracking
20 accessibility
21 activity
22 applications
23 catalyst
24 catalyst surface
25 composition
26 content
27 conversion products
28 fractional composition
29 gas oil
30 high content
31 hydrocracking
32 hydrogenation
33 increase
34 low-silicon zeolite Y
35 oil
36 oil hydrocracking
37 phase
38 pore system
39 process
40 products
41 reaction
42 situ
43 sulfide
44 sulfide Ni
45 sulfide phases
46 sulfur content
47 surface
48 system
49 temperature
50 time
51 time of reaction
52 tungsten sulfide
53 vacuum gas oil
54 zeolite Y
55 zeolite pore system
56 schema:name Application of Zeolite Y-Based Ni–W Supported and In Situ Prepared Catalysts in the Process of Vacuum Gas Oil Hydrocracking
57 schema:pagination 1287-1294
58 schema:productId N2b909fb6643d426f805dc3f19f28d5ae
59 N9c908ff6880d465c9a04b49e294758b9
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101303206
61 https://doi.org/10.1134/s0965544117140079
62 schema:sdDatePublished 2021-12-01T19:39
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N4f0f182d3b304030a5e55413dc29cb6a
65 schema:url https://doi.org/10.1134/s0965544117140079
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N2b909fb6643d426f805dc3f19f28d5ae schema:name doi
70 schema:value 10.1134/s0965544117140079
71 rdf:type schema:PropertyValue
72 N31a049d021db4301b3c814140c13a0ce rdf:first sg:person.010652323146.04
73 rdf:rest Nca8ec3f471a54dde8191f44ec158d718
74 N4f0f182d3b304030a5e55413dc29cb6a schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N551775f8a61f47fb9ec0c6705744f671 rdf:first sg:person.07570312367.72
77 rdf:rest rdf:nil
78 N9c908ff6880d465c9a04b49e294758b9 schema:name dimensions_id
79 schema:value pub.1101303206
80 rdf:type schema:PropertyValue
81 Nc1e7e066344749d9986a47dafc287910 schema:volumeNumber 57
82 rdf:type schema:PublicationVolume
83 Nca8ec3f471a54dde8191f44ec158d718 rdf:first sg:person.016171373325.39
84 rdf:rest N551775f8a61f47fb9ec0c6705744f671
85 Nf5c641bec33944999e75bdbd84595426 schema:issueNumber 14
86 rdf:type schema:PublicationIssue
87 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
88 schema:name Engineering
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
91 schema:name Chemical Engineering
92 rdf:type schema:DefinedTerm
93 sg:journal.1136087 schema:issn 0965-5441
94 1555-6239
95 schema:name Petroleum Chemistry
96 schema:publisher Pleiades Publishing
97 rdf:type schema:Periodical
98 sg:person.010652323146.04 schema:affiliation grid-institutes:grid.423490.8
99 schema:familyName Onishchenko
100 schema:givenName M. I.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010652323146.04
102 rdf:type schema:Person
103 sg:person.016171373325.39 schema:affiliation grid-institutes:grid.423490.8
104 schema:familyName Kulikov
105 schema:givenName A. B.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016171373325.39
107 rdf:type schema:Person
108 sg:person.07570312367.72 schema:affiliation grid-institutes:grid.14476.30
109 schema:familyName Maksimov
110 schema:givenName A. L.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07570312367.72
112 rdf:type schema:Person
113 sg:pub.10.1134/s0965544114050065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046453241
114 https://doi.org/10.1134/s0965544114050065
115 rdf:type schema:CreativeWork
116 sg:pub.10.1134/s0965544115080174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035764041
117 https://doi.org/10.1134/s0965544115080174
118 rdf:type schema:CreativeWork
119 sg:pub.10.1134/s2070050414030076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025513661
120 https://doi.org/10.1134/s2070050414030076
121 rdf:type schema:CreativeWork
122 grid-institutes:grid.14476.30 schema:alternateName Faculty of Chemistry, Moscow State University, Moscow, Russia
123 schema:name Faculty of Chemistry, Moscow State University, Moscow, Russia
124 Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
125 rdf:type schema:Organization
126 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
127 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...