Selective Hydrogenolysis of Glycerol to 1,2-Propylene Glycol on Ultrafine Copper Particles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

S. A. Nikolaev, G. S. Dmitriev, K. L. Zanaveskin, T. B. Egorova, S. N. Khadzhiev

ABSTRACT

Hydrogenolysis of glycerol to 1,2-propylene glycol at 200°C in the presence of Cu/Al2O3 catalysts prepared by coprecipitation from copper nitrate and aluminum nitrate using NaOH and NH4OH has been studied. The kinetics of the reaction is described by the first-order rate law. It has been found that the selectivity for the target product for all catalyst samples is 98% and the activity of the catalysts depends on their synthesis conditions. By using X-ray diffraction analysis, transmission electron microscopy, energy dispersive X-ray analysis, and X-ray photoelectron spectroscopy, it has been revealed that the active phase of Cu/Al2O3 samples is made of particles with an average size of 20 to 140 nm, whose surface consisted of CuO and Cu2O. The catalysts with different particle sizes the active phase but close chemical composition exhibits comparable activity (67.5 ± 5 h–1mol—1). This finding indicates that the hydrogenolysis reaction run in the presence of Cu/Al2O3 is not structure-responsive. A decrease in concentration of the Cu2O phase of the catalyst leads to a decrease in the hydrogenolysis rate, thereby this indicating a higher activity of the Cu2O phase in comparison with the CuO phase. More... »

PAGES

1074-1080

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544117120106

DOI

http://dx.doi.org/10.1134/s0965544117120106

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101064513


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolaev", 
        "givenName": "S. A.", 
        "id": "sg:person.014124155203.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014124155203.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karpov Institute of Physical Chemistry, 103064, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.70465.30", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia", 
            "Karpov Institute of Physical Chemistry, 103064, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dmitriev", 
        "givenName": "G. S.", 
        "id": "sg:person.013114567263.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013114567263.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karpov Institute of Physical Chemistry, 103064, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.70465.30", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia", 
            "Karpov Institute of Physical Chemistry, 103064, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zanaveskin", 
        "givenName": "K. L.", 
        "id": "sg:person.015634017763.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015634017763.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Egorova", 
        "givenName": "T. B.", 
        "id": "sg:person.015140422233.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015140422233.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khadzhiev", 
        "givenName": "S. N.", 
        "id": "sg:person.01332170507.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332170507.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13404-015-0168-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039478105", 
          "https://doi.org/10.1007/s13404-015-0168-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0036024410120228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021137587", 
          "https://doi.org/10.1134/s0036024410120228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0020168507040103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006335274", 
          "https://doi.org/10.1134/s0020168507040103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10975-005-0149-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026722072", 
          "https://doi.org/10.1007/s10975-005-0149-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Hydrogenolysis of glycerol to 1,2-propylene glycol at 200\u00b0C in the presence of Cu/Al2O3 catalysts prepared by coprecipitation from copper nitrate and aluminum nitrate using NaOH and NH4OH has been studied. The kinetics of the reaction is described by the first-order rate law. It has been found that the selectivity for the target product for all catalyst samples is 98% and the activity of the catalysts depends on their synthesis conditions. By using X-ray diffraction analysis, transmission electron microscopy, energy dispersive X-ray analysis, and X-ray photoelectron spectroscopy, it has been revealed that the active phase of Cu/Al2O3 samples is made of particles with an average size of 20 to 140 nm, whose surface consisted of CuO and Cu2O. The catalysts with different particle sizes the active phase but close chemical composition exhibits comparable activity (67.5 \u00b1 5 h\u20131mol\u20141). This finding indicates that the hydrogenolysis reaction run in the presence of Cu/Al2O3 is not structure-responsive. A decrease in concentration of the Cu2O phase of the catalyst leads to a decrease in the hydrogenolysis rate, thereby this indicating a higher activity of the Cu2O phase in comparison with the CuO phase.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965544117120106", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "keywords": [
      "Cu2O phase", 
      "Cu/Al2O3 catalyst", 
      "hydrogenolysis of glycerol", 
      "ray photoelectron spectroscopy", 
      "Cu/Al2O3", 
      "ultrafine copper particles", 
      "first-order rate law", 
      "ray diffraction analysis", 
      "close chemical composition", 
      "energy dispersive X", 
      "active phase", 
      "catalyst samples", 
      "hydrogenolysis rate", 
      "selective hydrogenolysis", 
      "hydrogenolysis reaction", 
      "copper nitrate", 
      "photoelectron spectroscopy", 
      "synthesis conditions", 
      "Al2O3 catalyst", 
      "aluminum nitrate", 
      "CuO phase", 
      "Al2O3 samples", 
      "transmission electron microscopy", 
      "copper particles", 
      "catalyst", 
      "diffraction analysis", 
      "dispersive X", 
      "target product", 
      "ray analysis", 
      "rate law", 
      "average size", 
      "chemical composition", 
      "high activity", 
      "electron microscopy", 
      "hydrogenolysis", 
      "comparable activity", 
      "glycol", 
      "reaction", 
      "particles", 
      "different particles", 
      "nitrate", 
      "coprecipitation", 
      "spectroscopy", 
      "CuO", 
      "phase", 
      "NH4OH", 
      "selectivity", 
      "Cu2O.", 
      "glycerol", 
      "NaOH", 
      "Al2O3", 
      "microscopy", 
      "kinetics", 
      "surface", 
      "samples", 
      "products", 
      "presence", 
      "composition", 
      "concentration", 
      "activity", 
      "size", 
      "decrease", 
      "analysis", 
      "conditions", 
      "comparison", 
      "rate", 
      "law", 
      "findings", 
      "Cu/Al2O3 samples"
    ], 
    "name": "Selective Hydrogenolysis of Glycerol to 1,2-Propylene Glycol on Ultrafine Copper Particles", 
    "pagination": "1074-1080", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101064513"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544117120106"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544117120106", 
      "https://app.dimensions.ai/details/publication/pub.1101064513"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_735.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965544117120106"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544117120106'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544117120106'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544117120106'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544117120106'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      22 PREDICATES      99 URIs      87 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544117120106 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N40146a1c88f0497fb767ac2bd2013e29
4 schema:citation sg:pub.10.1007/s10975-005-0149-x
5 sg:pub.10.1007/s13404-015-0168-y
6 sg:pub.10.1134/s0020168507040103
7 sg:pub.10.1134/s0036024410120228
8 schema:datePublished 2017-12
9 schema:datePublishedReg 2017-12-01
10 schema:description Hydrogenolysis of glycerol to 1,2-propylene glycol at 200°C in the presence of Cu/Al2O3 catalysts prepared by coprecipitation from copper nitrate and aluminum nitrate using NaOH and NH4OH has been studied. The kinetics of the reaction is described by the first-order rate law. It has been found that the selectivity for the target product for all catalyst samples is 98% and the activity of the catalysts depends on their synthesis conditions. By using X-ray diffraction analysis, transmission electron microscopy, energy dispersive X-ray analysis, and X-ray photoelectron spectroscopy, it has been revealed that the active phase of Cu/Al2O3 samples is made of particles with an average size of 20 to 140 nm, whose surface consisted of CuO and Cu2O. The catalysts with different particle sizes the active phase but close chemical composition exhibits comparable activity (67.5 ± 5 h–1mol—1). This finding indicates that the hydrogenolysis reaction run in the presence of Cu/Al2O3 is not structure-responsive. A decrease in concentration of the Cu2O phase of the catalyst leads to a decrease in the hydrogenolysis rate, thereby this indicating a higher activity of the Cu2O phase in comparison with the CuO phase.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N029f99d63c8e448ba8ab290c3442f94b
15 N9763db43005c4217aef9c17a887feab3
16 sg:journal.1136087
17 schema:keywords Al2O3
18 Al2O3 catalyst
19 Al2O3 samples
20 Cu/Al2O3
21 Cu/Al2O3 catalyst
22 Cu/Al2O3 samples
23 Cu2O phase
24 Cu2O.
25 CuO
26 CuO phase
27 NH4OH
28 NaOH
29 active phase
30 activity
31 aluminum nitrate
32 analysis
33 average size
34 catalyst
35 catalyst samples
36 chemical composition
37 close chemical composition
38 comparable activity
39 comparison
40 composition
41 concentration
42 conditions
43 copper nitrate
44 copper particles
45 coprecipitation
46 decrease
47 different particles
48 diffraction analysis
49 dispersive X
50 electron microscopy
51 energy dispersive X
52 findings
53 first-order rate law
54 glycerol
55 glycol
56 high activity
57 hydrogenolysis
58 hydrogenolysis of glycerol
59 hydrogenolysis rate
60 hydrogenolysis reaction
61 kinetics
62 law
63 microscopy
64 nitrate
65 particles
66 phase
67 photoelectron spectroscopy
68 presence
69 products
70 rate
71 rate law
72 ray analysis
73 ray diffraction analysis
74 ray photoelectron spectroscopy
75 reaction
76 samples
77 selective hydrogenolysis
78 selectivity
79 size
80 spectroscopy
81 surface
82 synthesis conditions
83 target product
84 transmission electron microscopy
85 ultrafine copper particles
86 schema:name Selective Hydrogenolysis of Glycerol to 1,2-Propylene Glycol on Ultrafine Copper Particles
87 schema:pagination 1074-1080
88 schema:productId N6040bf570a614d9cbed07b0f00e86f01
89 Na83bc4eb19094ba5b031a015161c2c26
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101064513
91 https://doi.org/10.1134/s0965544117120106
92 schema:sdDatePublished 2021-12-01T19:38
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher N923a75e186894c4e91e2d2b8a3657cd2
95 schema:url https://doi.org/10.1134/s0965544117120106
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N029f99d63c8e448ba8ab290c3442f94b schema:issueNumber 12
100 rdf:type schema:PublicationIssue
101 N22dd8c17297d432d928cdd918bbe2686 rdf:first sg:person.015140422233.86
102 rdf:rest Nb9051613b79b4b5ab1e30ce6fdededbd
103 N2382819412044ef7b2fb2e8e00120840 rdf:first sg:person.015634017763.58
104 rdf:rest N22dd8c17297d432d928cdd918bbe2686
105 N40146a1c88f0497fb767ac2bd2013e29 rdf:first sg:person.014124155203.66
106 rdf:rest N986792b5333449818f5026ae02a88b17
107 N6040bf570a614d9cbed07b0f00e86f01 schema:name dimensions_id
108 schema:value pub.1101064513
109 rdf:type schema:PropertyValue
110 N923a75e186894c4e91e2d2b8a3657cd2 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N9763db43005c4217aef9c17a887feab3 schema:volumeNumber 57
113 rdf:type schema:PublicationVolume
114 N986792b5333449818f5026ae02a88b17 rdf:first sg:person.013114567263.16
115 rdf:rest N2382819412044ef7b2fb2e8e00120840
116 Na83bc4eb19094ba5b031a015161c2c26 schema:name doi
117 schema:value 10.1134/s0965544117120106
118 rdf:type schema:PropertyValue
119 Nb9051613b79b4b5ab1e30ce6fdededbd rdf:first sg:person.01332170507.75
120 rdf:rest rdf:nil
121 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
122 schema:name Engineering
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
125 schema:name Chemical Engineering
126 rdf:type schema:DefinedTerm
127 sg:journal.1136087 schema:issn 0965-5441
128 1555-6239
129 schema:name Petroleum Chemistry
130 schema:publisher Pleiades Publishing
131 rdf:type schema:Periodical
132 sg:person.013114567263.16 schema:affiliation grid-institutes:grid.70465.30
133 schema:familyName Dmitriev
134 schema:givenName G. S.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013114567263.16
136 rdf:type schema:Person
137 sg:person.01332170507.75 schema:affiliation grid-institutes:grid.423490.8
138 schema:familyName Khadzhiev
139 schema:givenName S. N.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332170507.75
141 rdf:type schema:Person
142 sg:person.014124155203.66 schema:affiliation grid-institutes:grid.14476.30
143 schema:familyName Nikolaev
144 schema:givenName S. A.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014124155203.66
146 rdf:type schema:Person
147 sg:person.015140422233.86 schema:affiliation grid-institutes:grid.14476.30
148 schema:familyName Egorova
149 schema:givenName T. B.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015140422233.86
151 rdf:type schema:Person
152 sg:person.015634017763.58 schema:affiliation grid-institutes:grid.70465.30
153 schema:familyName Zanaveskin
154 schema:givenName K. L.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015634017763.58
156 rdf:type schema:Person
157 sg:pub.10.1007/s10975-005-0149-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026722072
158 https://doi.org/10.1007/s10975-005-0149-x
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s13404-015-0168-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1039478105
161 https://doi.org/10.1007/s13404-015-0168-y
162 rdf:type schema:CreativeWork
163 sg:pub.10.1134/s0020168507040103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006335274
164 https://doi.org/10.1134/s0020168507040103
165 rdf:type schema:CreativeWork
166 sg:pub.10.1134/s0036024410120228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021137587
167 https://doi.org/10.1134/s0036024410120228
168 rdf:type schema:CreativeWork
169 grid-institutes:grid.14476.30 schema:alternateName Moscow State University, Moscow, Russia
170 schema:name Moscow State University, Moscow, Russia
171 rdf:type schema:Organization
172 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia
173 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia
174 rdf:type schema:Organization
175 grid-institutes:grid.70465.30 schema:alternateName Karpov Institute of Physical Chemistry, 103064, Moscow, Russia
176 schema:name Karpov Institute of Physical Chemistry, 103064, Moscow, Russia
177 Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...