Selective Hydrogenolysis of Glycerol to 1,2-Propylene Glycol on Ultrafine Copper Particles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

S. A. Nikolaev, G. S. Dmitriev, K. L. Zanaveskin, T. B. Egorova, S. N. Khadzhiev

ABSTRACT

Hydrogenolysis of glycerol to 1,2-propylene glycol at 200°C in the presence of Cu/Al2O3 catalysts prepared by coprecipitation from copper nitrate and aluminum nitrate using NaOH and NH4OH has been studied. The kinetics of the reaction is described by the first-order rate law. It has been found that the selectivity for the target product for all catalyst samples is 98% and the activity of the catalysts depends on their synthesis conditions. By using X-ray diffraction analysis, transmission electron microscopy, energy dispersive X-ray analysis, and X-ray photoelectron spectroscopy, it has been revealed that the active phase of Cu/Al2O3 samples is made of particles with an average size of 20 to 140 nm, whose surface consisted of CuO and Cu2O. The catalysts with different particle sizes the active phase but close chemical composition exhibits comparable activity (67.5 ± 5 h–1mol—1). This finding indicates that the hydrogenolysis reaction run in the presence of Cu/Al2O3 is not structure-responsive. A decrease in concentration of the Cu2O phase of the catalyst leads to a decrease in the hydrogenolysis rate, thereby this indicating a higher activity of the Cu2O phase in comparison with the CuO phase. More... »

PAGES

1074-1080

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544117120106

DOI

http://dx.doi.org/10.1134/s0965544117120106

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101064513


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolaev", 
        "givenName": "S. A.", 
        "id": "sg:person.014124155203.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014124155203.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karpov Institute of Physical Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.70465.30", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia", 
            "Karpov Institute of Physical Chemistry, 103064, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dmitriev", 
        "givenName": "G. S.", 
        "id": "sg:person.013114567263.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013114567263.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karpov Institute of Physical Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.70465.30", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia", 
            "Karpov Institute of Physical Chemistry, 103064, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zanaveskin", 
        "givenName": "K. L.", 
        "id": "sg:person.015634017763.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015634017763.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Egorova", 
        "givenName": "T. B.", 
        "id": "sg:person.015140422233.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015140422233.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khadzhiev", 
        "givenName": "S. N.", 
        "id": "sg:person.01332170507.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332170507.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0926-860x(99)00232-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000927217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0020168507040103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006335274", 
          "https://doi.org/10.1134/s0020168507040103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2014.10.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013367920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2010.07.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014051759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0036024410120228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021137587", 
          "https://doi.org/10.1134/s0036024410120228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2009.11.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022705782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10975-005-0149-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026722072", 
          "https://doi.org/10.1007/s10975-005-0149-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10975-005-0149-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026722072", 
          "https://doi.org/10.1007/s10975-005-0149-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2012.02.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032936465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13404-015-0168-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039478105", 
          "https://doi.org/10.1007/s13404-015-0168-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13404-015-0168-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039478105", 
          "https://doi.org/10.1007/s13404-015-0168-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcata.2004.11.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044079577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/om030633x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056272541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rc2001v070n02abeh000637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058192537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2017.02.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083823998"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Hydrogenolysis of glycerol to 1,2-propylene glycol at 200\u00b0C in the presence of Cu/Al2O3 catalysts prepared by coprecipitation from copper nitrate and aluminum nitrate using NaOH and NH4OH has been studied. The kinetics of the reaction is described by the first-order rate law. It has been found that the selectivity for the target product for all catalyst samples is 98% and the activity of the catalysts depends on their synthesis conditions. By using X-ray diffraction analysis, transmission electron microscopy, energy dispersive X-ray analysis, and X-ray photoelectron spectroscopy, it has been revealed that the active phase of Cu/Al2O3 samples is made of particles with an average size of 20 to 140 nm, whose surface consisted of CuO and Cu2O. The catalysts with different particle sizes the active phase but close chemical composition exhibits comparable activity (67.5 \u00b1 5 h\u20131mol\u20141). This finding indicates that the hydrogenolysis reaction run in the presence of Cu/Al2O3 is not structure-responsive. A decrease in concentration of the Cu2O phase of the catalyst leads to a decrease in the hydrogenolysis rate, thereby this indicating a higher activity of the Cu2O phase in comparison with the CuO phase.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0965544117120106", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "name": "Selective Hydrogenolysis of Glycerol to 1,2-Propylene Glycol on Ultrafine Copper Particles", 
    "pagination": "1074-1080", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "39f350daba2376f0ed793d3008fa9e8515669eff6cb38c8875e60c83f70d5c89"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544117120106"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101064513"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544117120106", 
      "https://app.dimensions.ai/details/publication/pub.1101064513"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0965544117120106"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544117120106'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544117120106'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544117120106'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544117120106'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544117120106 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N9841fa7095e34fa7971c537108102e08
4 schema:citation sg:pub.10.1007/s10975-005-0149-x
5 sg:pub.10.1007/s13404-015-0168-y
6 sg:pub.10.1134/s0020168507040103
7 sg:pub.10.1134/s0036024410120228
8 https://doi.org/10.1016/j.apcata.2004.11.033
9 https://doi.org/10.1016/j.apcatb.2009.11.021
10 https://doi.org/10.1016/j.apcatb.2017.02.038
11 https://doi.org/10.1016/j.apsusc.2010.07.086
12 https://doi.org/10.1016/j.biortech.2012.02.053
13 https://doi.org/10.1016/j.rser.2014.10.033
14 https://doi.org/10.1016/s0926-860x(99)00232-x
15 https://doi.org/10.1021/om030633x
16 https://doi.org/10.1070/rc2001v070n02abeh000637
17 schema:datePublished 2017-12
18 schema:datePublishedReg 2017-12-01
19 schema:description Hydrogenolysis of glycerol to 1,2-propylene glycol at 200°C in the presence of Cu/Al2O3 catalysts prepared by coprecipitation from copper nitrate and aluminum nitrate using NaOH and NH4OH has been studied. The kinetics of the reaction is described by the first-order rate law. It has been found that the selectivity for the target product for all catalyst samples is 98% and the activity of the catalysts depends on their synthesis conditions. By using X-ray diffraction analysis, transmission electron microscopy, energy dispersive X-ray analysis, and X-ray photoelectron spectroscopy, it has been revealed that the active phase of Cu/Al2O3 samples is made of particles with an average size of 20 to 140 nm, whose surface consisted of CuO and Cu2O. The catalysts with different particle sizes the active phase but close chemical composition exhibits comparable activity (67.5 ± 5 h–1mol—1). This finding indicates that the hydrogenolysis reaction run in the presence of Cu/Al2O3 is not structure-responsive. A decrease in concentration of the Cu2O phase of the catalyst leads to a decrease in the hydrogenolysis rate, thereby this indicating a higher activity of the Cu2O phase in comparison with the CuO phase.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N620509019f6f4ae4ad1a20f1c291c64f
24 Ndc69e854f0df4fc5b2e26ec29a357aa8
25 sg:journal.1136087
26 schema:name Selective Hydrogenolysis of Glycerol to 1,2-Propylene Glycol on Ultrafine Copper Particles
27 schema:pagination 1074-1080
28 schema:productId N492ce4cb7f2740f7bd03553fac8ed002
29 Nc0b67606a0b54d50b662ed743329064b
30 Nfd512d75e9a94dd58c25ced44df5f2ef
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101064513
32 https://doi.org/10.1134/s0965544117120106
33 schema:sdDatePublished 2019-04-10T16:38
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Na21fe5aa3eb64cbebc26762c4f93db05
36 schema:url http://link.springer.com/10.1134/S0965544117120106
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N0fd825e360c14629bb0b037b31934f48 rdf:first sg:person.013114567263.16
41 rdf:rest N6f65aee84e244584be27f0dfa9e39760
42 N2456fbda5b6c4b4bb0d818543337ecb4 rdf:first sg:person.015140422233.86
43 rdf:rest N301cdb36197445e1bc28e465993d0c64
44 N301cdb36197445e1bc28e465993d0c64 rdf:first sg:person.01332170507.75
45 rdf:rest rdf:nil
46 N492ce4cb7f2740f7bd03553fac8ed002 schema:name doi
47 schema:value 10.1134/s0965544117120106
48 rdf:type schema:PropertyValue
49 N620509019f6f4ae4ad1a20f1c291c64f schema:volumeNumber 57
50 rdf:type schema:PublicationVolume
51 N6f65aee84e244584be27f0dfa9e39760 rdf:first sg:person.015634017763.58
52 rdf:rest N2456fbda5b6c4b4bb0d818543337ecb4
53 N9841fa7095e34fa7971c537108102e08 rdf:first sg:person.014124155203.66
54 rdf:rest N0fd825e360c14629bb0b037b31934f48
55 Na21fe5aa3eb64cbebc26762c4f93db05 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Nc0b67606a0b54d50b662ed743329064b schema:name readcube_id
58 schema:value 39f350daba2376f0ed793d3008fa9e8515669eff6cb38c8875e60c83f70d5c89
59 rdf:type schema:PropertyValue
60 Ndc69e854f0df4fc5b2e26ec29a357aa8 schema:issueNumber 12
61 rdf:type schema:PublicationIssue
62 Nfd512d75e9a94dd58c25ced44df5f2ef schema:name dimensions_id
63 schema:value pub.1101064513
64 rdf:type schema:PropertyValue
65 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
66 schema:name Chemical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
69 schema:name Physical Chemistry (incl. Structural)
70 rdf:type schema:DefinedTerm
71 sg:journal.1136087 schema:issn 0965-5441
72 1555-6239
73 schema:name Petroleum Chemistry
74 rdf:type schema:Periodical
75 sg:person.013114567263.16 schema:affiliation https://www.grid.ac/institutes/grid.70465.30
76 schema:familyName Dmitriev
77 schema:givenName G. S.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013114567263.16
79 rdf:type schema:Person
80 sg:person.01332170507.75 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
81 schema:familyName Khadzhiev
82 schema:givenName S. N.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332170507.75
84 rdf:type schema:Person
85 sg:person.014124155203.66 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
86 schema:familyName Nikolaev
87 schema:givenName S. A.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014124155203.66
89 rdf:type schema:Person
90 sg:person.015140422233.86 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
91 schema:familyName Egorova
92 schema:givenName T. B.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015140422233.86
94 rdf:type schema:Person
95 sg:person.015634017763.58 schema:affiliation https://www.grid.ac/institutes/grid.70465.30
96 schema:familyName Zanaveskin
97 schema:givenName K. L.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015634017763.58
99 rdf:type schema:Person
100 sg:pub.10.1007/s10975-005-0149-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026722072
101 https://doi.org/10.1007/s10975-005-0149-x
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s13404-015-0168-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1039478105
104 https://doi.org/10.1007/s13404-015-0168-y
105 rdf:type schema:CreativeWork
106 sg:pub.10.1134/s0020168507040103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006335274
107 https://doi.org/10.1134/s0020168507040103
108 rdf:type schema:CreativeWork
109 sg:pub.10.1134/s0036024410120228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021137587
110 https://doi.org/10.1134/s0036024410120228
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.apcata.2004.11.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044079577
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.apcatb.2009.11.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022705782
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.apcatb.2017.02.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083823998
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.apsusc.2010.07.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014051759
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.biortech.2012.02.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032936465
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.rser.2014.10.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013367920
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0926-860x(99)00232-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000927217
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1021/om030633x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056272541
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1070/rc2001v070n02abeh000637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058192537
129 rdf:type schema:CreativeWork
130 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
131 schema:name Moscow State University, Moscow, Russia
132 rdf:type schema:Organization
133 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
134 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia
135 rdf:type schema:Organization
136 https://www.grid.ac/institutes/grid.70465.30 schema:alternateName Karpov Institute of Physical Chemistry
137 schema:name Karpov Institute of Physical Chemistry, 103064, Moscow, Russia
138 Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...