Effect of Feedstock and Gas Atmosphere Composition on Selectivity and Distribution of Hydrocarbon Groups in Gasoline Synthesis from Oxygenates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

M. V. Magomedova, E. G. Peresypkina, D. A. Ionin, M. I. Afokin, K. B. Golubev, S. N. Khadzhiev

ABSTRACT

Gasoline has been synthesized from oxygenates (dimethyl ether and methanol) on a HZSM-5 zeolite catalyst, modified by palladium and zinc, in a micropilot unit operating in the continuous recycle flow mode. The influence of the gas atmosphere composition—synthesis gas, hydrogen, and methane—on the gasoline selectivity, and on-stream stability of the catalyst has been determined for dimethyl ether (DME) used as a feedstock. The hydrocarbon composition and the carbon distribution in the products have been compared using DME and methanol as the feedstock in the synthesis-gas atmosphere. It has been shown that the higher gasoline selectivity production in the case of methanol is due to the higher concentration of aromatic hydrocarbons, which is achieved by decreasing the intensity of their dealkylation. More... »

PAGES

1052-1057

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544117120076

DOI

http://dx.doi.org/10.1134/s0965544117120076

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101064510


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magomedova", 
        "givenName": "M. V.", 
        "id": "sg:person.010644277651.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644277651.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peresypkina", 
        "givenName": "E. G.", 
        "id": "sg:person.012237240651.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012237240651.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ionin", 
        "givenName": "D. A.", 
        "id": "sg:person.010032561341.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010032561341.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Afokin", 
        "givenName": "M. I.", 
        "id": "sg:person.012347474664.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012347474664.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Golubev", 
        "givenName": "K. B.", 
        "id": "sg:person.014274474347.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014274474347.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khadzhiev", 
        "givenName": "S. N.", 
        "id": "sg:person.01332170507.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332170507.75"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Gasoline has been synthesized from oxygenates (dimethyl ether and methanol) on a HZSM-5 zeolite catalyst, modified by palladium and zinc, in a micropilot unit operating in the continuous recycle flow mode. The influence of the gas atmosphere composition\u2014synthesis gas, hydrogen, and methane\u2014on the gasoline selectivity, and on-stream stability of the catalyst has been determined for dimethyl ether (DME) used as a feedstock. The hydrocarbon composition and the carbon distribution in the products have been compared using DME and methanol as the feedstock in the synthesis-gas atmosphere. It has been shown that the higher gasoline selectivity production in the case of methanol is due to the higher concentration of aromatic hydrocarbons, which is achieved by decreasing the intensity of their dealkylation.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965544117120076", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "keywords": [
      "dimethyl ether", 
      "flow mode", 
      "gas atmosphere composition", 
      "gasoline synthesis", 
      "effects of feedstock", 
      "gasoline selectivity", 
      "feedstock", 
      "carbon distribution", 
      "case of methanol", 
      "atmosphere composition", 
      "stream stability", 
      "gasoline", 
      "gas", 
      "oxygenates", 
      "methane", 
      "HZSM-5 zeolite catalyst", 
      "hydrocarbon groups", 
      "hydrogen", 
      "zeolite catalysts", 
      "atmosphere", 
      "distribution", 
      "catalyst", 
      "stability", 
      "hydrocarbon composition", 
      "composition", 
      "methanol", 
      "selectivity", 
      "mode", 
      "influence", 
      "aromatic hydrocarbons", 
      "hydrocarbons", 
      "high concentrations", 
      "palladium", 
      "products", 
      "units", 
      "production", 
      "concentration", 
      "effect", 
      "zinc", 
      "intensity", 
      "ether", 
      "synthesis", 
      "cases", 
      "dealkylation", 
      "group", 
      "micropilot unit", 
      "continuous recycle flow mode", 
      "recycle flow mode", 
      "gas atmosphere composition\u2014synthesis gas", 
      "atmosphere composition\u2014synthesis gas", 
      "composition\u2014synthesis gas", 
      "synthesis-gas atmosphere", 
      "higher gasoline selectivity production", 
      "gasoline selectivity production", 
      "selectivity production"
    ], 
    "name": "Effect of Feedstock and Gas Atmosphere Composition on Selectivity and Distribution of Hydrocarbon Groups in Gasoline Synthesis from Oxygenates", 
    "pagination": "1052-1057", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101064510"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544117120076"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544117120076", 
      "https://app.dimensions.ai/details/publication/pub.1101064510"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_744.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965544117120076"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544117120076'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544117120076'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544117120076'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544117120076'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      81 URIs      73 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544117120076 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N135ffc261fe2483d93ad65726b3ce843
4 schema:datePublished 2017-12
5 schema:datePublishedReg 2017-12-01
6 schema:description Gasoline has been synthesized from oxygenates (dimethyl ether and methanol) on a HZSM-5 zeolite catalyst, modified by palladium and zinc, in a micropilot unit operating in the continuous recycle flow mode. The influence of the gas atmosphere composition—synthesis gas, hydrogen, and methane—on the gasoline selectivity, and on-stream stability of the catalyst has been determined for dimethyl ether (DME) used as a feedstock. The hydrocarbon composition and the carbon distribution in the products have been compared using DME and methanol as the feedstock in the synthesis-gas atmosphere. It has been shown that the higher gasoline selectivity production in the case of methanol is due to the higher concentration of aromatic hydrocarbons, which is achieved by decreasing the intensity of their dealkylation.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Ne457903c337e461faeb53e73c9554dfe
11 Nf2ac03c84e8a4e978500a8947eaae299
12 sg:journal.1136087
13 schema:keywords HZSM-5 zeolite catalyst
14 aromatic hydrocarbons
15 atmosphere
16 atmosphere composition
17 atmosphere composition—synthesis gas
18 carbon distribution
19 case of methanol
20 cases
21 catalyst
22 composition
23 composition—synthesis gas
24 concentration
25 continuous recycle flow mode
26 dealkylation
27 dimethyl ether
28 distribution
29 effect
30 effects of feedstock
31 ether
32 feedstock
33 flow mode
34 gas
35 gas atmosphere composition
36 gas atmosphere composition—synthesis gas
37 gasoline
38 gasoline selectivity
39 gasoline selectivity production
40 gasoline synthesis
41 group
42 high concentrations
43 higher gasoline selectivity production
44 hydrocarbon composition
45 hydrocarbon groups
46 hydrocarbons
47 hydrogen
48 influence
49 intensity
50 methane
51 methanol
52 micropilot unit
53 mode
54 oxygenates
55 palladium
56 production
57 products
58 recycle flow mode
59 selectivity
60 selectivity production
61 stability
62 stream stability
63 synthesis
64 synthesis-gas atmosphere
65 units
66 zeolite catalysts
67 zinc
68 schema:name Effect of Feedstock and Gas Atmosphere Composition on Selectivity and Distribution of Hydrocarbon Groups in Gasoline Synthesis from Oxygenates
69 schema:pagination 1052-1057
70 schema:productId Na92ba2e86b1d41e09411a7b0f1456033
71 Ndde3bfcf2aa24077bf2a44a9654a0324
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101064510
73 https://doi.org/10.1134/s0965544117120076
74 schema:sdDatePublished 2021-11-01T18:31
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N35db016093b64023b60dbb3016bfcd14
77 schema:url https://doi.org/10.1134/s0965544117120076
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N135ffc261fe2483d93ad65726b3ce843 rdf:first sg:person.010644277651.03
82 rdf:rest N5a61c8069cbd4778943121299ab759a9
83 N35db016093b64023b60dbb3016bfcd14 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N4e21e4d23e8a49ce847e72720d0a5ce2 rdf:first sg:person.010032561341.43
86 rdf:rest Nccc31a11096c430ba9c263c8a3f3a805
87 N5a61c8069cbd4778943121299ab759a9 rdf:first sg:person.012237240651.93
88 rdf:rest N4e21e4d23e8a49ce847e72720d0a5ce2
89 N9921393a02f940b8b1c8054fa14e4a21 rdf:first sg:person.01332170507.75
90 rdf:rest rdf:nil
91 Na92ba2e86b1d41e09411a7b0f1456033 schema:name dimensions_id
92 schema:value pub.1101064510
93 rdf:type schema:PropertyValue
94 Nccc31a11096c430ba9c263c8a3f3a805 rdf:first sg:person.012347474664.11
95 rdf:rest Nd60333e1fa954e12853bfe102492fdf6
96 Nd60333e1fa954e12853bfe102492fdf6 rdf:first sg:person.014274474347.06
97 rdf:rest N9921393a02f940b8b1c8054fa14e4a21
98 Ndde3bfcf2aa24077bf2a44a9654a0324 schema:name doi
99 schema:value 10.1134/s0965544117120076
100 rdf:type schema:PropertyValue
101 Ne457903c337e461faeb53e73c9554dfe schema:issueNumber 12
102 rdf:type schema:PublicationIssue
103 Nf2ac03c84e8a4e978500a8947eaae299 schema:volumeNumber 57
104 rdf:type schema:PublicationVolume
105 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
106 schema:name Engineering
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
109 schema:name Chemical Engineering
110 rdf:type schema:DefinedTerm
111 sg:journal.1136087 schema:issn 0965-5441
112 1555-6239
113 schema:name Petroleum Chemistry
114 schema:publisher Pleiades Publishing
115 rdf:type schema:Periodical
116 sg:person.010032561341.43 schema:affiliation grid-institutes:grid.423490.8
117 schema:familyName Ionin
118 schema:givenName D. A.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010032561341.43
120 rdf:type schema:Person
121 sg:person.010644277651.03 schema:affiliation grid-institutes:grid.423490.8
122 schema:familyName Magomedova
123 schema:givenName M. V.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644277651.03
125 rdf:type schema:Person
126 sg:person.012237240651.93 schema:affiliation grid-institutes:grid.423490.8
127 schema:familyName Peresypkina
128 schema:givenName E. G.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012237240651.93
130 rdf:type schema:Person
131 sg:person.012347474664.11 schema:affiliation grid-institutes:grid.423490.8
132 schema:familyName Afokin
133 schema:givenName M. I.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012347474664.11
135 rdf:type schema:Person
136 sg:person.01332170507.75 schema:affiliation grid-institutes:grid.423490.8
137 schema:familyName Khadzhiev
138 schema:givenName S. N.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332170507.75
140 rdf:type schema:Person
141 sg:person.014274474347.06 schema:affiliation grid-institutes:grid.423490.8
142 schema:familyName Golubev
143 schema:givenName K. B.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014274474347.06
145 rdf:type schema:Person
146 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia
147 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...