Membrane material based on octyl-substituted polymethylsiloxane for separation of C3/C1 hydrocarbons View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-04-26

AUTHORS

E. A. Grushevenko, I. L. Borisov, D. S. Bakhtin, S. A. Legkov, G. N. Bondarenko, A. V. Volkov

ABSTRACT

Novel one-step technique has been proposed for octyl-substituted polymethylsiloxane (POMS) synthesis and vulcanization. The technique makes it possible to prepare С3/С1 selective gas separation membranes. The fact of POMS formation and vulcanization by hydrosilylation reaction involving 1-octene and polymethylhydrosiloxane has been confirmed by IR spectroscopy data. On the basis of the results obtained by measuring permeability of POMS membranes to permanent gases and propane, a preferred modifier to crosslinker ratio at which polymer films with the best gas transport properties can be obtained has been estimated at 95/5. Experimentally determined permeability coefficients for methane and propane (270 and 1560 barrer, respectively) and ideal propane/methane selectivity of 5.8 allow for the conclusion that POMS obtained in the study has transport properties comparable to those of similar membrane materials reported in the literature as obtained via multistep synthesis. More... »

PAGES

334-340

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544117040028

DOI

http://dx.doi.org/10.1134/s0965544117040028

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085055337


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grushevenko", 
        "givenName": "E. A.", 
        "id": "sg:person.011755064027.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755064027.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borisov", 
        "givenName": "I. L.", 
        "id": "sg:person.011075136212.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011075136212.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bakhtin", 
        "givenName": "D. S.", 
        "id": "sg:person.012255336067.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012255336067.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Legkov", 
        "givenName": "S. A.", 
        "id": "sg:person.010531441667.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010531441667.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bondarenko", 
        "givenName": "G. N.", 
        "id": "sg:person.016522422357.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522422357.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Volkov", 
        "givenName": "A. V.", 
        "id": "sg:person.012655354565.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012655354565.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0965544111070139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000888272", 
          "https://doi.org/10.1134/s0965544111070139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965545x1301001x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048625817", 
          "https://doi.org/10.1134/s0965545x1301001x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep31183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050939279", 
          "https://doi.org/10.1038/srep31183"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04-26", 
    "datePublishedReg": "2017-04-26", 
    "description": "Novel one-step technique has been proposed for octyl-substituted polymethylsiloxane (POMS) synthesis and vulcanization. The technique makes it possible to prepare \u04213/\u04211 selective gas separation membranes. The fact of POMS formation and vulcanization by hydrosilylation reaction involving 1-octene and polymethylhydrosiloxane has been confirmed by IR spectroscopy data. On the basis of the results obtained by measuring permeability of POMS membranes to permanent gases and propane, a preferred modifier to crosslinker ratio at which polymer films with the best gas transport properties can be obtained has been estimated at 95/5. Experimentally determined permeability coefficients for methane and propane (270 and 1560 barrer, respectively) and ideal propane/methane selectivity of 5.8 allow for the conclusion that POMS obtained in the study has transport properties comparable to those of similar membrane materials reported in the literature as obtained via multistep synthesis.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965544117040028", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "keywords": [
      "selective gas separation membranes", 
      "best gas transport properties", 
      "membrane material", 
      "gas separation membranes", 
      "IR spectroscopy data", 
      "gas transport properties", 
      "hydrosilylation reaction", 
      "methane selectivity", 
      "separation membranes", 
      "polymer films", 
      "transport properties", 
      "multistep synthesis", 
      "one-step technique", 
      "POMS membrane", 
      "spectroscopy data", 
      "permanent gases", 
      "C1 hydrocarbons", 
      "propane", 
      "preferred modifier", 
      "synthesis", 
      "permeability coefficient", 
      "vulcanization", 
      "polymethylhydrosiloxane", 
      "polymethylsiloxane", 
      "properties", 
      "selectivity", 
      "materials", 
      "hydrocarbons", 
      "reaction", 
      "films", 
      "separation", 
      "methane", 
      "modifiers", 
      "membrane", 
      "gases", 
      "formation", 
      "technique", 
      "permeability", 
      "coefficient", 
      "ratio", 
      "results", 
      "basis", 
      "study", 
      "data", 
      "POMS", 
      "fact", 
      "literature", 
      "conclusion", 
      "octyl-substituted polymethylsiloxane (POMS) synthesis", 
      "polymethylsiloxane (POMS) synthesis", 
      "POMS formation", 
      "ideal propane/methane selectivity", 
      "propane/methane selectivity", 
      "similar membrane materials", 
      "octyl-substituted polymethylsiloxane", 
      "C3/C1 hydrocarbons"
    ], 
    "name": "Membrane material based on octyl-substituted polymethylsiloxane for separation of C3/C1 hydrocarbons", 
    "pagination": "334-340", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085055337"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544117040028"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544117040028", 
      "https://app.dimensions.ai/details/publication/pub.1085055337"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_730.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965544117040028"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544117040028'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544117040028'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544117040028'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544117040028'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      22 PREDICATES      85 URIs      73 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544117040028 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 anzsrc-for:0912
4 schema:author N228ff5237ecd42baba05414cb1134894
5 schema:citation sg:pub.10.1038/srep31183
6 sg:pub.10.1134/s0965544111070139
7 sg:pub.10.1134/s0965545x1301001x
8 schema:datePublished 2017-04-26
9 schema:datePublishedReg 2017-04-26
10 schema:description Novel one-step technique has been proposed for octyl-substituted polymethylsiloxane (POMS) synthesis and vulcanization. The technique makes it possible to prepare С3/С1 selective gas separation membranes. The fact of POMS formation and vulcanization by hydrosilylation reaction involving 1-octene and polymethylhydrosiloxane has been confirmed by IR spectroscopy data. On the basis of the results obtained by measuring permeability of POMS membranes to permanent gases and propane, a preferred modifier to crosslinker ratio at which polymer films with the best gas transport properties can be obtained has been estimated at 95/5. Experimentally determined permeability coefficients for methane and propane (270 and 1560 barrer, respectively) and ideal propane/methane selectivity of 5.8 allow for the conclusion that POMS obtained in the study has transport properties comparable to those of similar membrane materials reported in the literature as obtained via multistep synthesis.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N18d9b0e7a4f248faac5ad7decca1d353
15 N52adfd8d9507417c98b59fb726a7f30a
16 sg:journal.1136087
17 schema:keywords C1 hydrocarbons
18 C3/C1 hydrocarbons
19 IR spectroscopy data
20 POMS
21 POMS formation
22 POMS membrane
23 basis
24 best gas transport properties
25 coefficient
26 conclusion
27 data
28 fact
29 films
30 formation
31 gas separation membranes
32 gas transport properties
33 gases
34 hydrocarbons
35 hydrosilylation reaction
36 ideal propane/methane selectivity
37 literature
38 materials
39 membrane
40 membrane material
41 methane
42 methane selectivity
43 modifiers
44 multistep synthesis
45 octyl-substituted polymethylsiloxane
46 octyl-substituted polymethylsiloxane (POMS) synthesis
47 one-step technique
48 permanent gases
49 permeability
50 permeability coefficient
51 polymer films
52 polymethylhydrosiloxane
53 polymethylsiloxane
54 polymethylsiloxane (POMS) synthesis
55 preferred modifier
56 propane
57 propane/methane selectivity
58 properties
59 ratio
60 reaction
61 results
62 selective gas separation membranes
63 selectivity
64 separation
65 separation membranes
66 similar membrane materials
67 spectroscopy data
68 study
69 synthesis
70 technique
71 transport properties
72 vulcanization
73 schema:name Membrane material based on octyl-substituted polymethylsiloxane for separation of C3/C1 hydrocarbons
74 schema:pagination 334-340
75 schema:productId N12a6b8aa8e07479182c4ea3f184464b9
76 N7886105b33fb46d1a2922a5458739be3
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085055337
78 https://doi.org/10.1134/s0965544117040028
79 schema:sdDatePublished 2021-12-01T19:38
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N917e23ad309e4608b3d4f40327b4e2ef
82 schema:url https://doi.org/10.1134/s0965544117040028
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N12a6b8aa8e07479182c4ea3f184464b9 schema:name dimensions_id
87 schema:value pub.1085055337
88 rdf:type schema:PropertyValue
89 N18d9b0e7a4f248faac5ad7decca1d353 schema:issueNumber 4
90 rdf:type schema:PublicationIssue
91 N1e8c53fc3e6d417591a229bc73438432 rdf:first sg:person.011075136212.72
92 rdf:rest N4905aa7a871b496d825dacbe6051b80e
93 N228ff5237ecd42baba05414cb1134894 rdf:first sg:person.011755064027.24
94 rdf:rest N1e8c53fc3e6d417591a229bc73438432
95 N489967bdb8ec41789a3fd4fa7c04f679 rdf:first sg:person.010531441667.02
96 rdf:rest Na8deba2eb4ce452a8e773089916aba06
97 N4905aa7a871b496d825dacbe6051b80e rdf:first sg:person.012255336067.83
98 rdf:rest N489967bdb8ec41789a3fd4fa7c04f679
99 N52adfd8d9507417c98b59fb726a7f30a schema:volumeNumber 57
100 rdf:type schema:PublicationVolume
101 N7886105b33fb46d1a2922a5458739be3 schema:name doi
102 schema:value 10.1134/s0965544117040028
103 rdf:type schema:PropertyValue
104 N917e23ad309e4608b3d4f40327b4e2ef schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Na8deba2eb4ce452a8e773089916aba06 rdf:first sg:person.016522422357.89
107 rdf:rest Nebc8f73b0d4248c99baf4f629d5ab5f0
108 Nebc8f73b0d4248c99baf4f629d5ab5f0 rdf:first sg:person.012655354565.76
109 rdf:rest rdf:nil
110 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
111 schema:name Engineering
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
114 schema:name Chemical Engineering
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
117 schema:name Materials Engineering
118 rdf:type schema:DefinedTerm
119 sg:journal.1136087 schema:issn 0965-5441
120 1555-6239
121 schema:name Petroleum Chemistry
122 schema:publisher Pleiades Publishing
123 rdf:type schema:Periodical
124 sg:person.010531441667.02 schema:affiliation grid-institutes:grid.423490.8
125 schema:familyName Legkov
126 schema:givenName S. A.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010531441667.02
128 rdf:type schema:Person
129 sg:person.011075136212.72 schema:affiliation grid-institutes:grid.423490.8
130 schema:familyName Borisov
131 schema:givenName I. L.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011075136212.72
133 rdf:type schema:Person
134 sg:person.011755064027.24 schema:affiliation grid-institutes:grid.423490.8
135 schema:familyName Grushevenko
136 schema:givenName E. A.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755064027.24
138 rdf:type schema:Person
139 sg:person.012255336067.83 schema:affiliation grid-institutes:grid.423490.8
140 schema:familyName Bakhtin
141 schema:givenName D. S.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012255336067.83
143 rdf:type schema:Person
144 sg:person.012655354565.76 schema:affiliation grid-institutes:grid.423490.8
145 schema:familyName Volkov
146 schema:givenName A. V.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012655354565.76
148 rdf:type schema:Person
149 sg:person.016522422357.89 schema:affiliation grid-institutes:grid.423490.8
150 schema:familyName Bondarenko
151 schema:givenName G. N.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522422357.89
153 rdf:type schema:Person
154 sg:pub.10.1038/srep31183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050939279
155 https://doi.org/10.1038/srep31183
156 rdf:type schema:CreativeWork
157 sg:pub.10.1134/s0965544111070139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000888272
158 https://doi.org/10.1134/s0965544111070139
159 rdf:type schema:CreativeWork
160 sg:pub.10.1134/s0965545x1301001x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048625817
161 https://doi.org/10.1134/s0965545x1301001x
162 rdf:type schema:CreativeWork
163 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
164 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...