TIPS RAS GTL technology: Determination of design View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-09

AUTHORS

S. N. Khadzhiev, M. V. Magomedova, E. G. Peresypkina

ABSTRACT

The known hydrocarbon synthesis technologies from synthesis gas through methanol and/or dimethyl ether (DME), which were implemented in different scales plants are analyzed. Common features, advantages, and disadvantages of each technology have been noted. Several designs of TIPS RAS GTL-technology based on the original DME single-step and gasoline catalysts have been calculated and the influence of the syngas composition on the gasoline specific yield for the optimal design has been studied. More... »

PAGES

788-797

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544116090097

DOI

http://dx.doi.org/10.1134/s0965544116090097

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053773707


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khadzhiev", 
        "givenName": "S. N.", 
        "id": "sg:person.01332170507.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332170507.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magomedova", 
        "givenName": "M. V.", 
        "id": "sg:person.010644277651.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644277651.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peresypkina", 
        "givenName": "E. G.", 
        "id": "sg:person.012237240651.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012237240651.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jcat.2014.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004104111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0920-5861(90)85007-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017770419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2991(09)60521-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018256937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024447002826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050566031", 
          "https://doi.org/10.1023/a:1024447002826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/je010154+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055879810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/je010154+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055879810"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09", 
    "datePublishedReg": "2016-09-01", 
    "description": "The known hydrocarbon synthesis technologies from synthesis gas through methanol and/or dimethyl ether (DME), which were implemented in different scales plants are analyzed. Common features, advantages, and disadvantages of each technology have been noted. Several designs of TIPS RAS GTL-technology based on the original DME single-step and gasoline catalysts have been calculated and the influence of the syngas composition on the gasoline specific yield for the optimal design has been studied.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0965544116090097", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "name": "TIPS RAS GTL technology: Determination of design", 
    "pagination": "788-797", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "145cbcdefd6daae0da58f32f1ca555ba4d5528c67c99b914e6fe37ae7be2d343"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544116090097"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053773707"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544116090097", 
      "https://app.dimensions.ai/details/publication/pub.1053773707"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88222_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0965544116090097"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544116090097'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544116090097'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544116090097'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544116090097'


 

This table displays all metadata directly associated to this object as RDF triples.

91 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544116090097 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N480edd1a117e4af8b27b02f11eed5ff7
4 schema:citation sg:pub.10.1023/a:1024447002826
5 https://doi.org/10.1016/0920-5861(90)85007-b
6 https://doi.org/10.1016/j.jcat.2014.12.014
7 https://doi.org/10.1016/s0167-2991(09)60521-8
8 https://doi.org/10.1021/je010154+
9 schema:datePublished 2016-09
10 schema:datePublishedReg 2016-09-01
11 schema:description The known hydrocarbon synthesis technologies from synthesis gas through methanol and/or dimethyl ether (DME), which were implemented in different scales plants are analyzed. Common features, advantages, and disadvantages of each technology have been noted. Several designs of TIPS RAS GTL-technology based on the original DME single-step and gasoline catalysts have been calculated and the influence of the syngas composition on the gasoline specific yield for the optimal design has been studied.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N77f05708b69a4935ba600cab2ec68d36
16 Nf775c079f34c4e4fa34c87a9676dd387
17 sg:journal.1136087
18 schema:name TIPS RAS GTL technology: Determination of design
19 schema:pagination 788-797
20 schema:productId N85652aa458e8425e908a6ed966dcd2bd
21 N9e173d1b2bb9459d884b633dfdc087ac
22 Nfa152447293243ec930768dfb00721ce
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053773707
24 https://doi.org/10.1134/s0965544116090097
25 schema:sdDatePublished 2019-04-11T13:07
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nbcebe4001642457b95b64b5dccf7c217
28 schema:url https://link.springer.com/10.1134%2FS0965544116090097
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N18af291b5636434cb2338509708f584e rdf:first sg:person.012237240651.93
33 rdf:rest rdf:nil
34 N22a814d31c304280a308a286794ca3a5 rdf:first sg:person.010644277651.03
35 rdf:rest N18af291b5636434cb2338509708f584e
36 N480edd1a117e4af8b27b02f11eed5ff7 rdf:first sg:person.01332170507.75
37 rdf:rest N22a814d31c304280a308a286794ca3a5
38 N77f05708b69a4935ba600cab2ec68d36 schema:volumeNumber 56
39 rdf:type schema:PublicationVolume
40 N85652aa458e8425e908a6ed966dcd2bd schema:name dimensions_id
41 schema:value pub.1053773707
42 rdf:type schema:PropertyValue
43 N9e173d1b2bb9459d884b633dfdc087ac schema:name doi
44 schema:value 10.1134/s0965544116090097
45 rdf:type schema:PropertyValue
46 Nbcebe4001642457b95b64b5dccf7c217 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Nf775c079f34c4e4fa34c87a9676dd387 schema:issueNumber 9
49 rdf:type schema:PublicationIssue
50 Nfa152447293243ec930768dfb00721ce schema:name readcube_id
51 schema:value 145cbcdefd6daae0da58f32f1ca555ba4d5528c67c99b914e6fe37ae7be2d343
52 rdf:type schema:PropertyValue
53 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
54 schema:name Chemical Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
57 schema:name Physical Chemistry (incl. Structural)
58 rdf:type schema:DefinedTerm
59 sg:journal.1136087 schema:issn 0965-5441
60 1555-6239
61 schema:name Petroleum Chemistry
62 rdf:type schema:Periodical
63 sg:person.010644277651.03 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
64 schema:familyName Magomedova
65 schema:givenName M. V.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644277651.03
67 rdf:type schema:Person
68 sg:person.012237240651.93 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
69 schema:familyName Peresypkina
70 schema:givenName E. G.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012237240651.93
72 rdf:type schema:Person
73 sg:person.01332170507.75 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
74 schema:familyName Khadzhiev
75 schema:givenName S. N.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332170507.75
77 rdf:type schema:Person
78 sg:pub.10.1023/a:1024447002826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050566031
79 https://doi.org/10.1023/a:1024447002826
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/0920-5861(90)85007-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1017770419
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/j.jcat.2014.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004104111
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/s0167-2991(09)60521-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018256937
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1021/je010154+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1055879810
88 rdf:type schema:CreativeWork
89 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
90 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia
91 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...