TIPS RAS GTL technology: Determination of design View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-09

AUTHORS

S. N. Khadzhiev, M. V. Magomedova, E. G. Peresypkina

ABSTRACT

The known hydrocarbon synthesis technologies from synthesis gas through methanol and/or dimethyl ether (DME), which were implemented in different scales plants are analyzed. Common features, advantages, and disadvantages of each technology have been noted. Several designs of TIPS RAS GTL-technology based on the original DME single-step and gasoline catalysts have been calculated and the influence of the syngas composition on the gasoline specific yield for the optimal design has been studied. More... »

PAGES

788-797

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544116090097

DOI

http://dx.doi.org/10.1134/s0965544116090097

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053773707


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khadzhiev", 
        "givenName": "S. N.", 
        "id": "sg:person.01332170507.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332170507.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magomedova", 
        "givenName": "M. V.", 
        "id": "sg:person.010644277651.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644277651.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peresypkina", 
        "givenName": "E. G.", 
        "id": "sg:person.012237240651.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012237240651.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1024447002826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050566031", 
          "https://doi.org/10.1023/a:1024447002826"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09", 
    "datePublishedReg": "2016-09-01", 
    "description": "The known hydrocarbon synthesis technologies from synthesis gas through methanol and/or dimethyl ether (DME), which were implemented in different scales plants are analyzed. Common features, advantages, and disadvantages of each technology have been noted. Several designs of TIPS RAS GTL-technology based on the original DME single-step and gasoline catalysts have been calculated and the influence of the syngas composition on the gasoline specific yield for the optimal design has been studied.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965544116090097", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "keywords": [
      "determination of design", 
      "syngas composition", 
      "dimethyl ether", 
      "scale plant", 
      "synthesis gas", 
      "optimal design", 
      "synthesis technology", 
      "specific yield", 
      "design", 
      "technology", 
      "gas", 
      "influence", 
      "advantages", 
      "disadvantages", 
      "catalyst", 
      "methanol", 
      "composition", 
      "plants", 
      "determination", 
      "features", 
      "ether", 
      "yield", 
      "common feature", 
      "gasoline catalysts", 
      "hydrocarbon synthesis technologies", 
      "different scales plants", 
      "TIPS RAS GTL-technology", 
      "RAS GTL-technology", 
      "GTL-technology", 
      "original DME", 
      "gasoline specific yield"
    ], 
    "name": "TIPS RAS GTL technology: Determination of design", 
    "pagination": "788-797", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053773707"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544116090097"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544116090097", 
      "https://app.dimensions.ai/details/publication/pub.1053773707"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_709.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965544116090097"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544116090097'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544116090097'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544116090097'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544116090097'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      22 PREDICATES      58 URIs      49 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544116090097 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author Needd777523f64552bf286ed5599f8b64
4 schema:citation sg:pub.10.1023/a:1024447002826
5 schema:datePublished 2016-09
6 schema:datePublishedReg 2016-09-01
7 schema:description The known hydrocarbon synthesis technologies from synthesis gas through methanol and/or dimethyl ether (DME), which were implemented in different scales plants are analyzed. Common features, advantages, and disadvantages of each technology have been noted. Several designs of TIPS RAS GTL-technology based on the original DME single-step and gasoline catalysts have been calculated and the influence of the syngas composition on the gasoline specific yield for the optimal design has been studied.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N2241f6ae010645dd97036ccdfc9cc131
12 N28dbba9e380846dd9296be6844cc0489
13 sg:journal.1136087
14 schema:keywords GTL-technology
15 RAS GTL-technology
16 TIPS RAS GTL-technology
17 advantages
18 catalyst
19 common feature
20 composition
21 design
22 determination
23 determination of design
24 different scales plants
25 dimethyl ether
26 disadvantages
27 ether
28 features
29 gas
30 gasoline catalysts
31 gasoline specific yield
32 hydrocarbon synthesis technologies
33 influence
34 methanol
35 optimal design
36 original DME
37 plants
38 scale plant
39 specific yield
40 syngas composition
41 synthesis gas
42 synthesis technology
43 technology
44 yield
45 schema:name TIPS RAS GTL technology: Determination of design
46 schema:pagination 788-797
47 schema:productId N6d1f9ec760d744efa0a5e38a7c713e0d
48 Nda29995e7faf404f95b4a85d5890e9de
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053773707
50 https://doi.org/10.1134/s0965544116090097
51 schema:sdDatePublished 2021-11-01T18:27
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N719578a0440b4a3783913c3cb426b67b
54 schema:url https://doi.org/10.1134/s0965544116090097
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N2241f6ae010645dd97036ccdfc9cc131 schema:issueNumber 9
59 rdf:type schema:PublicationIssue
60 N28dbba9e380846dd9296be6844cc0489 schema:volumeNumber 56
61 rdf:type schema:PublicationVolume
62 N6c48cbf4e676439ebaa87936ac1aeda0 rdf:first sg:person.012237240651.93
63 rdf:rest rdf:nil
64 N6d1f9ec760d744efa0a5e38a7c713e0d schema:name dimensions_id
65 schema:value pub.1053773707
66 rdf:type schema:PropertyValue
67 N719578a0440b4a3783913c3cb426b67b schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nd69b61363ba640938f7dfe86fdd9b3a7 rdf:first sg:person.010644277651.03
70 rdf:rest N6c48cbf4e676439ebaa87936ac1aeda0
71 Nda29995e7faf404f95b4a85d5890e9de schema:name doi
72 schema:value 10.1134/s0965544116090097
73 rdf:type schema:PropertyValue
74 Needd777523f64552bf286ed5599f8b64 rdf:first sg:person.01332170507.75
75 rdf:rest Nd69b61363ba640938f7dfe86fdd9b3a7
76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
77 schema:name Engineering
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
80 schema:name Chemical Engineering
81 rdf:type schema:DefinedTerm
82 sg:journal.1136087 schema:issn 0965-5441
83 1555-6239
84 schema:name Petroleum Chemistry
85 schema:publisher Pleiades Publishing
86 rdf:type schema:Periodical
87 sg:person.010644277651.03 schema:affiliation grid-institutes:grid.423490.8
88 schema:familyName Magomedova
89 schema:givenName M. V.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644277651.03
91 rdf:type schema:Person
92 sg:person.012237240651.93 schema:affiliation grid-institutes:grid.423490.8
93 schema:familyName Peresypkina
94 schema:givenName E. G.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012237240651.93
96 rdf:type schema:Person
97 sg:person.01332170507.75 schema:affiliation grid-institutes:grid.423490.8
98 schema:familyName Khadzhiev
99 schema:givenName S. N.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332170507.75
101 rdf:type schema:Person
102 sg:pub.10.1023/a:1024447002826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050566031
103 https://doi.org/10.1023/a:1024447002826
104 rdf:type schema:CreativeWork
105 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia
106 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...