Fischer–Tropsch synthesis in the presence of ultrafine iron-containing catalysts derived from reverse microemulsions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-06

AUTHORS

M. V. Kulikova, M. V. Chudakova, O. S. Dement’eva, M. I. Ivantsov, N. V. Oknina

ABSTRACT

It is shown that active catalysts for Fischer–Tropsch synthesis with a controlled size of the particles of the dispersed phase may be formed on the basis of reverse microemulsions in a slurry reactor. After optimization of the composition of the reverse microemulsion (iron nitrate nonahydrate as a precursor of the active metal and SPAN-80 as a surfactant, 5 wt %), the size of the microemulsion droplets decreases to 130 nm. The chosen method for the synthesis of catalytic systems makes it possible to introduce promoters without any marked enlargement of the dispersed phase (130–160 nm). High-temperature Fischer–Tropsch synthesis is performed in a slurry reactor using catalysts prepared from reverse iron-containing microemulsions. The tested iron-containing catalytic systems feature high selectivity (up 73 wt %) in the formation of gasoline fractions (the C5–C10 fraction) that contain an abnormally high (up to 77 wt %) level of unsaturated hydrocarbons. More... »

PAGES

535-539

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544116060062

DOI

http://dx.doi.org/10.1134/s0965544116060062

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009246549


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "OAO Elektrogorsk Institute of Oil Refining, Elektrogorsk, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
            "OAO Elektrogorsk Institute of Oil Refining, Elektrogorsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kulikova", 
        "givenName": "M. V.", 
        "id": "sg:person.011441232771.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011441232771.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "OAO Elektrogorsk Institute of Oil Refining, Elektrogorsk, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
            "OAO Elektrogorsk Institute of Oil Refining, Elektrogorsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chudakova", 
        "givenName": "M. V.", 
        "id": "sg:person.016272421333.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016272421333.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "OAO Elektrogorsk Institute of Oil Refining, Elektrogorsk, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
            "OAO Elektrogorsk Institute of Oil Refining, Elektrogorsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dement\u2019eva", 
        "givenName": "O. S.", 
        "id": "sg:person.012611105146.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012611105146.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "OAO Elektrogorsk Institute of Oil Refining, Elektrogorsk, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
            "OAO Elektrogorsk Institute of Oil Refining, Elektrogorsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ivantsov", 
        "givenName": "M. I.", 
        "id": "sg:person.016613745511.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016613745511.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "OAO Elektrogorsk Institute of Oil Refining, Elektrogorsk, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "OAO Elektrogorsk Institute of Oil Refining, Elektrogorsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oknina", 
        "givenName": "N. V.", 
        "id": "sg:person.013334364327.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334364327.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-009-7040-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037285827", 
          "https://doi.org/10.1007/978-94-009-7040-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544113060091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011832355", 
          "https://doi.org/10.1134/s0965544113060091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544111010075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049457187", 
          "https://doi.org/10.1134/s0965544111010075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544111010063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005790346", 
          "https://doi.org/10.1134/s0965544111010063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544111060077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032326510", 
          "https://doi.org/10.1134/s0965544111060077"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06", 
    "datePublishedReg": "2016-06-01", 
    "description": "It is shown that active catalysts for Fischer\u2013Tropsch synthesis with a controlled size of the particles of the dispersed phase may be formed on the basis of reverse microemulsions in a slurry reactor. After optimization of the composition of the reverse microemulsion (iron nitrate nonahydrate as a precursor of the active metal and SPAN-80 as a surfactant, 5 wt %), the size of the microemulsion droplets decreases to 130 nm. The chosen method for the synthesis of catalytic systems makes it possible to introduce promoters without any marked enlargement of the dispersed phase (130\u2013160 nm). High-temperature Fischer\u2013Tropsch synthesis is performed in a slurry reactor using catalysts prepared from reverse iron-containing microemulsions. The tested iron-containing catalytic systems feature high selectivity (up 73 wt %) in the formation of gasoline fractions (the C5\u2013C10 fraction) that contain an abnormally high (up to 77 wt %) level of unsaturated hydrocarbons.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965544116060062", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "keywords": [
      "Fischer\u2013Tropsch synthesis", 
      "reverse microemulsion", 
      "catalytic system", 
      "slurry reactor", 
      "high-temperature Fischer\u2013Tropsch synthesis", 
      "iron-containing catalysts", 
      "active catalyst", 
      "Tropsch synthesis", 
      "high selectivity", 
      "unsaturated hydrocarbons", 
      "microemulsions", 
      "catalyst", 
      "gasoline fraction", 
      "synthesis", 
      "reactor", 
      "selectivity", 
      "hydrocarbons", 
      "phase", 
      "particles", 
      "formation", 
      "composition", 
      "size", 
      "presence", 
      "fraction", 
      "method", 
      "system", 
      "decrease", 
      "optimization", 
      "basis", 
      "levels", 
      "high levels", 
      "promoter", 
      "enlargement", 
      "marked enlargement", 
      "reverse iron-containing microemulsions", 
      "iron-containing microemulsions", 
      "iron-containing catalytic systems", 
      "ultrafine iron-containing catalysts"
    ], 
    "name": "Fischer\u2013Tropsch synthesis in the presence of ultrafine iron-containing catalysts derived from reverse microemulsions", 
    "pagination": "535-539", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009246549"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544116060062"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544116060062", 
      "https://app.dimensions.ai/details/publication/pub.1009246549"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_709.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965544116060062"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544116060062'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544116060062'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544116060062'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544116060062'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      22 PREDICATES      69 URIs      56 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544116060062 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N176353be299241c5af9a78c72a56f75d
4 schema:citation sg:pub.10.1007/978-94-009-7040-3
5 sg:pub.10.1134/s0965544111010063
6 sg:pub.10.1134/s0965544111010075
7 sg:pub.10.1134/s0965544111060077
8 sg:pub.10.1134/s0965544113060091
9 schema:datePublished 2016-06
10 schema:datePublishedReg 2016-06-01
11 schema:description It is shown that active catalysts for Fischer–Tropsch synthesis with a controlled size of the particles of the dispersed phase may be formed on the basis of reverse microemulsions in a slurry reactor. After optimization of the composition of the reverse microemulsion (iron nitrate nonahydrate as a precursor of the active metal and SPAN-80 as a surfactant, 5 wt %), the size of the microemulsion droplets decreases to 130 nm. The chosen method for the synthesis of catalytic systems makes it possible to introduce promoters without any marked enlargement of the dispersed phase (130–160 nm). High-temperature Fischer–Tropsch synthesis is performed in a slurry reactor using catalysts prepared from reverse iron-containing microemulsions. The tested iron-containing catalytic systems feature high selectivity (up 73 wt %) in the formation of gasoline fractions (the C5–C10 fraction) that contain an abnormally high (up to 77 wt %) level of unsaturated hydrocarbons.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Nb5f0fb117fb64b569a0eaee1653c7ad7
16 Nde45298566f34d21b69c431ccddd2f4d
17 sg:journal.1136087
18 schema:keywords Fischer–Tropsch synthesis
19 Tropsch synthesis
20 active catalyst
21 basis
22 catalyst
23 catalytic system
24 composition
25 decrease
26 enlargement
27 formation
28 fraction
29 gasoline fraction
30 high levels
31 high selectivity
32 high-temperature Fischer–Tropsch synthesis
33 hydrocarbons
34 iron-containing catalysts
35 iron-containing catalytic systems
36 iron-containing microemulsions
37 levels
38 marked enlargement
39 method
40 microemulsions
41 optimization
42 particles
43 phase
44 presence
45 promoter
46 reactor
47 reverse iron-containing microemulsions
48 reverse microemulsion
49 selectivity
50 size
51 slurry reactor
52 synthesis
53 system
54 ultrafine iron-containing catalysts
55 unsaturated hydrocarbons
56 schema:name Fischer–Tropsch synthesis in the presence of ultrafine iron-containing catalysts derived from reverse microemulsions
57 schema:pagination 535-539
58 schema:productId Nb917812974f8488f8378a258c0be93a2
59 Nd5d9c9506f234468a4108fa60c837930
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009246549
61 https://doi.org/10.1134/s0965544116060062
62 schema:sdDatePublished 2022-01-01T18:41
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N9de497fed6b643e4ba73bfab2546d67b
65 schema:url https://doi.org/10.1134/s0965544116060062
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N176353be299241c5af9a78c72a56f75d rdf:first sg:person.011441232771.03
70 rdf:rest N60259a21d1674fb292cc336b7ce185ec
71 N60259a21d1674fb292cc336b7ce185ec rdf:first sg:person.016272421333.01
72 rdf:rest Nb977915f870c487d9240db886b6ba045
73 N8a324e66a0da463d8a44173cd0a2dd29 rdf:first sg:person.013334364327.36
74 rdf:rest rdf:nil
75 N9de497fed6b643e4ba73bfab2546d67b schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nb5f0fb117fb64b569a0eaee1653c7ad7 schema:volumeNumber 56
78 rdf:type schema:PublicationVolume
79 Nb917812974f8488f8378a258c0be93a2 schema:name doi
80 schema:value 10.1134/s0965544116060062
81 rdf:type schema:PropertyValue
82 Nb977915f870c487d9240db886b6ba045 rdf:first sg:person.012611105146.28
83 rdf:rest Nc41b97842c6144a7a6bc7e1dcaeee134
84 Nc41b97842c6144a7a6bc7e1dcaeee134 rdf:first sg:person.016613745511.06
85 rdf:rest N8a324e66a0da463d8a44173cd0a2dd29
86 Nd5d9c9506f234468a4108fa60c837930 schema:name dimensions_id
87 schema:value pub.1009246549
88 rdf:type schema:PropertyValue
89 Nde45298566f34d21b69c431ccddd2f4d schema:issueNumber 6
90 rdf:type schema:PublicationIssue
91 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
92 schema:name Engineering
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
95 schema:name Chemical Engineering
96 rdf:type schema:DefinedTerm
97 sg:journal.1136087 schema:issn 0965-5441
98 1555-6239
99 schema:name Petroleum Chemistry
100 schema:publisher Pleiades Publishing
101 rdf:type schema:Periodical
102 sg:person.011441232771.03 schema:affiliation grid-institutes:None
103 schema:familyName Kulikova
104 schema:givenName M. V.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011441232771.03
106 rdf:type schema:Person
107 sg:person.012611105146.28 schema:affiliation grid-institutes:None
108 schema:familyName Dement’eva
109 schema:givenName O. S.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012611105146.28
111 rdf:type schema:Person
112 sg:person.013334364327.36 schema:affiliation grid-institutes:None
113 schema:familyName Oknina
114 schema:givenName N. V.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334364327.36
116 rdf:type schema:Person
117 sg:person.016272421333.01 schema:affiliation grid-institutes:None
118 schema:familyName Chudakova
119 schema:givenName M. V.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016272421333.01
121 rdf:type schema:Person
122 sg:person.016613745511.06 schema:affiliation grid-institutes:None
123 schema:familyName Ivantsov
124 schema:givenName M. I.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016613745511.06
126 rdf:type schema:Person
127 sg:pub.10.1007/978-94-009-7040-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037285827
128 https://doi.org/10.1007/978-94-009-7040-3
129 rdf:type schema:CreativeWork
130 sg:pub.10.1134/s0965544111010063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005790346
131 https://doi.org/10.1134/s0965544111010063
132 rdf:type schema:CreativeWork
133 sg:pub.10.1134/s0965544111010075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049457187
134 https://doi.org/10.1134/s0965544111010075
135 rdf:type schema:CreativeWork
136 sg:pub.10.1134/s0965544111060077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032326510
137 https://doi.org/10.1134/s0965544111060077
138 rdf:type schema:CreativeWork
139 sg:pub.10.1134/s0965544113060091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011832355
140 https://doi.org/10.1134/s0965544113060091
141 rdf:type schema:CreativeWork
142 grid-institutes:None schema:alternateName OAO Elektrogorsk Institute of Oil Refining, Elektrogorsk, Russia
143 schema:name OAO Elektrogorsk Institute of Oil Refining, Elektrogorsk, Russia
144 Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...