The formation of polysulfone hollow fiber membranes by the free fall spinning method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-05

AUTHORS

A. V. Bildyukevich, T. V. Plisko, V. V. Usosky

ABSTRACT

The basic principles of the spinning of polysulfone hollow fiber membranes by the dry-jet wet spinning process, where the polymer solution is extruded through an air gap between the spinneret and coagulation bath by the free fall spinning method, have been discussed. The main distinctive feature of the method is that the deformation of both the extruded polymer solution and the nascent hollow fiber (spinneret drawing) is due to the action of the gravity force alone without applying an external tensile force. Published data on the effect of the shear rate of the spinning solution at the spinneret outlet and nascent fiber drawing in the air gap on the structure and permeability of the hollow fiber membranes have been analyzed. The main factors affecting the spinneret drawing and dimensions of the hollow fiber membranes formed by free fall spinning have been experimentally revealed using polysulfones of different molecular weights. The factors are the dope composition, approaching ratio and viscosity, the air gap length, the temperature and the feed rate of the dope and the bore fluid, coagulation power of the bore fluid with respect to the dope. It has been found that as the spinneret draw value increases, the hydraulic permeability and the rejection coefficient of the resulting fiber generally change in a nonmonotonic manner: the pure water flux of the hollow fibers passes through a maximum and the rejection coefficient, through a maximum or minimum. The behavior is caused by the fact that the pore structure of the hollow fiber membranes is formed during uniaxial drawing and, in some cases (at increasing bore liquid flow rate), during biaxial deformation. When an external mechanical force is applied to the forming hollow fiber, an increase in the fraction of interconnected pores and the transition from cylindrical to slitlike pores are possible, which results in an increase in the hydraulic permeability of the fiber walls. A further increase in the spinneret draw ratio results in the reverse process, a decrease in the membrane matrix porosity due to the orientation and collapse of the pores, yielding a decrease in the flux and an increase in the rejection coefficient. By blocking the process of hollow fiber shrinkage through an increase in the bore fluid flow rate (increasing the internal diameter of the hollow fiber), it is possible to enhance the effective porosity of the fiber walls without substantial change in pore size, i.e., a transition from a system with isolated or partly isolated pores to a system of interconnected pores. A sharp increase in the hydraulic permeability of the hollow fiber membranes without a substantial change in their rejection is supposedly caused by this structural change. More... »

PAGES

379-400

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544116050042

DOI

http://dx.doi.org/10.1134/s0965544116050042

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032736061


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Physical and Organic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.435325.6", 
          "name": [
            "Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, ul. Surganova 13, 220072, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bildyukevich", 
        "givenName": "A. V.", 
        "id": "sg:person.012752707525.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012752707525.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physical and Organic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.435325.6", 
          "name": [
            "Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, ul. Surganova 13, 220072, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plisko", 
        "givenName": "T. V.", 
        "id": "sg:person.015347726635.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015347726635.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physical and Organic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.435325.6", 
          "name": [
            "Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, ul. Surganova 13, 220072, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Usosky", 
        "givenName": "V. V.", 
        "id": "sg:person.016575200751.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016575200751.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.memsci.2004.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000096919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0011-9164(02)00724-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000463903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544115040064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001561884", 
          "https://doi.org/10.1134/s0965544115040064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0376-7388(96)00249-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005121120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0376-7388(00)00665-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008086002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2004.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009457620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0376-7388(02)00286-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010411172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0376-7388(92)80135-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012010379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2015.06.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013366759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0376-7388(96)00088-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013940914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965545x1302003x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015127232", 
          "https://doi.org/10.1134/s0965545x1302003x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0376-7388(00)00414-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015284608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2004.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016425683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2013.01.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016646638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2010.07.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018016820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0032-3861(96)00753-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018158166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0376-7388(01)00370-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020289063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.progpolymsci.2012.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024484620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0376-7388(99)00122-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024735367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0376-7388(99)00278-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025335428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2004.10.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026288008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544111070073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026424197", 
          "https://doi.org/10.1134/s0965544111070073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2014.04.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027523546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0011-9164(02)00282-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027864116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0376-7388(93)e0136-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028204528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0376-7388(97)00267-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028934161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2013.10.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029040873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0376-7388(95)00256-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031367997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-1766-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034600515", 
          "https://doi.org/10.1007/978-94-009-1766-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-1766-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034600515", 
          "https://doi.org/10.1007/978-94-009-1766-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2004.06.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034902326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2005.09.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034906268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2009.07.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038857009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1383-5866(03)00009-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039581966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1383-5866(03)00009-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039581966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2011.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040735072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2014.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043121729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2012.04.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046847681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2509(99)00371-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047982528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0376-7388(96)00274-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048602053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2007.09.090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049356489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(94)90486-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050166485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(94)90486-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050166485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2011.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050463140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0376-7388(92)80134-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053386668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-9418(02)00107-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053486731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-9418(02)00107-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053486731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.iecr.5b01631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055090416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie9802111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055647140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie9802111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055647140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma00234a008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056184909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma9508966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056205131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma9508966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056205131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470020393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470020393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661236"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05", 
    "datePublishedReg": "2016-05-01", 
    "description": "The basic principles of the spinning of polysulfone hollow fiber membranes by the dry-jet wet spinning process, where the polymer solution is extruded through an air gap between the spinneret and coagulation bath by the free fall spinning method, have been discussed. The main distinctive feature of the method is that the deformation of both the extruded polymer solution and the nascent hollow fiber (spinneret drawing) is due to the action of the gravity force alone without applying an external tensile force. Published data on the effect of the shear rate of the spinning solution at the spinneret outlet and nascent fiber drawing in the air gap on the structure and permeability of the hollow fiber membranes have been analyzed. The main factors affecting the spinneret drawing and dimensions of the hollow fiber membranes formed by free fall spinning have been experimentally revealed using polysulfones of different molecular weights. The factors are the dope composition, approaching ratio and viscosity, the air gap length, the temperature and the feed rate of the dope and the bore fluid, coagulation power of the bore fluid with respect to the dope. It has been found that as the spinneret draw value increases, the hydraulic permeability and the rejection coefficient of the resulting fiber generally change in a nonmonotonic manner: the pure water flux of the hollow fibers passes through a maximum and the rejection coefficient, through a maximum or minimum. The behavior is caused by the fact that the pore structure of the hollow fiber membranes is formed during uniaxial drawing and, in some cases (at increasing bore liquid flow rate), during biaxial deformation. When an external mechanical force is applied to the forming hollow fiber, an increase in the fraction of interconnected pores and the transition from cylindrical to slitlike pores are possible, which results in an increase in the hydraulic permeability of the fiber walls. A further increase in the spinneret draw ratio results in the reverse process, a decrease in the membrane matrix porosity due to the orientation and collapse of the pores, yielding a decrease in the flux and an increase in the rejection coefficient. By blocking the process of hollow fiber shrinkage through an increase in the bore fluid flow rate (increasing the internal diameter of the hollow fiber), it is possible to enhance the effective porosity of the fiber walls without substantial change in pore size, i.e., a transition from a system with isolated or partly isolated pores to a system of interconnected pores. A sharp increase in the hydraulic permeability of the hollow fiber membranes without a substantial change in their rejection is supposedly caused by this structural change.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0965544116050042", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "name": "The formation of polysulfone hollow fiber membranes by the free fall spinning method", 
    "pagination": "379-400", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9bf386e48b4df05f96dbba8fe52d0a3a289f307063f6d5731351f843ccb1178f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544116050042"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032736061"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544116050042", 
      "https://app.dimensions.ai/details/publication/pub.1032736061"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88217_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0965544116050042"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544116050042'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544116050042'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544116050042'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544116050042'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      75 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544116050042 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N098390293aed4178a3efe13901d3ba1a
4 schema:citation sg:pub.10.1007/978-94-009-1766-8
5 sg:pub.10.1134/s0965544111070073
6 sg:pub.10.1134/s0965544115040064
7 sg:pub.10.1134/s0965545x1302003x
8 https://doi.org/10.1002/0470020393
9 https://doi.org/10.1016/0032-3861(94)90486-3
10 https://doi.org/10.1016/0376-7388(92)80134-6
11 https://doi.org/10.1016/0376-7388(92)80135-7
12 https://doi.org/10.1016/0376-7388(93)e0136-8
13 https://doi.org/10.1016/0376-7388(95)00256-1
14 https://doi.org/10.1016/0376-7388(96)00088-9
15 https://doi.org/10.1016/j.ces.2004.06.035
16 https://doi.org/10.1016/j.ces.2015.06.017
17 https://doi.org/10.1016/j.desal.2005.09.021
18 https://doi.org/10.1016/j.desal.2007.09.090
19 https://doi.org/10.1016/j.desal.2012.04.027
20 https://doi.org/10.1016/j.desal.2014.04.029
21 https://doi.org/10.1016/j.memsci.2004.04.012
22 https://doi.org/10.1016/j.memsci.2004.06.012
23 https://doi.org/10.1016/j.memsci.2004.09.031
24 https://doi.org/10.1016/j.memsci.2004.10.030
25 https://doi.org/10.1016/j.memsci.2009.07.041
26 https://doi.org/10.1016/j.memsci.2010.07.038
27 https://doi.org/10.1016/j.memsci.2011.03.016
28 https://doi.org/10.1016/j.memsci.2011.04.006
29 https://doi.org/10.1016/j.memsci.2013.01.044
30 https://doi.org/10.1016/j.memsci.2013.10.032
31 https://doi.org/10.1016/j.memsci.2014.04.021
32 https://doi.org/10.1016/j.progpolymsci.2012.01.001
33 https://doi.org/10.1016/s0009-2509(99)00371-1
34 https://doi.org/10.1016/s0011-9164(02)00282-5
35 https://doi.org/10.1016/s0011-9164(02)00724-5
36 https://doi.org/10.1016/s0032-3861(96)00753-7
37 https://doi.org/10.1016/s0142-9418(02)00107-1
38 https://doi.org/10.1016/s0376-7388(00)00414-2
39 https://doi.org/10.1016/s0376-7388(00)00665-7
40 https://doi.org/10.1016/s0376-7388(01)00370-2
41 https://doi.org/10.1016/s0376-7388(02)00286-7
42 https://doi.org/10.1016/s0376-7388(96)00249-9
43 https://doi.org/10.1016/s0376-7388(96)00274-8
44 https://doi.org/10.1016/s0376-7388(97)00267-6
45 https://doi.org/10.1016/s0376-7388(99)00122-2
46 https://doi.org/10.1016/s0376-7388(99)00278-1
47 https://doi.org/10.1016/s1383-5866(03)00009-1
48 https://doi.org/10.1021/acs.iecr.5b01631
49 https://doi.org/10.1021/ie9802111
50 https://doi.org/10.1021/ma00234a008
51 https://doi.org/10.1021/ma9508966
52 schema:datePublished 2016-05
53 schema:datePublishedReg 2016-05-01
54 schema:description The basic principles of the spinning of polysulfone hollow fiber membranes by the dry-jet wet spinning process, where the polymer solution is extruded through an air gap between the spinneret and coagulation bath by the free fall spinning method, have been discussed. The main distinctive feature of the method is that the deformation of both the extruded polymer solution and the nascent hollow fiber (spinneret drawing) is due to the action of the gravity force alone without applying an external tensile force. Published data on the effect of the shear rate of the spinning solution at the spinneret outlet and nascent fiber drawing in the air gap on the structure and permeability of the hollow fiber membranes have been analyzed. The main factors affecting the spinneret drawing and dimensions of the hollow fiber membranes formed by free fall spinning have been experimentally revealed using polysulfones of different molecular weights. The factors are the dope composition, approaching ratio and viscosity, the air gap length, the temperature and the feed rate of the dope and the bore fluid, coagulation power of the bore fluid with respect to the dope. It has been found that as the spinneret draw value increases, the hydraulic permeability and the rejection coefficient of the resulting fiber generally change in a nonmonotonic manner: the pure water flux of the hollow fibers passes through a maximum and the rejection coefficient, through a maximum or minimum. The behavior is caused by the fact that the pore structure of the hollow fiber membranes is formed during uniaxial drawing and, in some cases (at increasing bore liquid flow rate), during biaxial deformation. When an external mechanical force is applied to the forming hollow fiber, an increase in the fraction of interconnected pores and the transition from cylindrical to slitlike pores are possible, which results in an increase in the hydraulic permeability of the fiber walls. A further increase in the spinneret draw ratio results in the reverse process, a decrease in the membrane matrix porosity due to the orientation and collapse of the pores, yielding a decrease in the flux and an increase in the rejection coefficient. By blocking the process of hollow fiber shrinkage through an increase in the bore fluid flow rate (increasing the internal diameter of the hollow fiber), it is possible to enhance the effective porosity of the fiber walls without substantial change in pore size, i.e., a transition from a system with isolated or partly isolated pores to a system of interconnected pores. A sharp increase in the hydraulic permeability of the hollow fiber membranes without a substantial change in their rejection is supposedly caused by this structural change.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf N3ad8f9b6be334ac7a28d5b3cde1f4076
59 N7ccb542d2a3941e8bb24117400e9e41d
60 sg:journal.1136087
61 schema:name The formation of polysulfone hollow fiber membranes by the free fall spinning method
62 schema:pagination 379-400
63 schema:productId N066d3be64c5a4a558fa1a0ee86d6a0fc
64 N460d165ca7df4f1caf386afd12349d21
65 N7a4554c6ec9b4cd2bdb80e4a533be1da
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032736061
67 https://doi.org/10.1134/s0965544116050042
68 schema:sdDatePublished 2019-04-11T13:06
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N3b7694747b724c70a61976e05b64e6ea
71 schema:url https://link.springer.com/10.1134%2FS0965544116050042
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N066d3be64c5a4a558fa1a0ee86d6a0fc schema:name readcube_id
76 schema:value 9bf386e48b4df05f96dbba8fe52d0a3a289f307063f6d5731351f843ccb1178f
77 rdf:type schema:PropertyValue
78 N098390293aed4178a3efe13901d3ba1a rdf:first sg:person.012752707525.57
79 rdf:rest N513b5fa8e5ca417c99e206d3f3a3269b
80 N3ad8f9b6be334ac7a28d5b3cde1f4076 schema:issueNumber 5
81 rdf:type schema:PublicationIssue
82 N3b7694747b724c70a61976e05b64e6ea schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N460d165ca7df4f1caf386afd12349d21 schema:name doi
85 schema:value 10.1134/s0965544116050042
86 rdf:type schema:PropertyValue
87 N513b5fa8e5ca417c99e206d3f3a3269b rdf:first sg:person.015347726635.04
88 rdf:rest N558c77901d0b4c9cb28ede6b51ac8f29
89 N558c77901d0b4c9cb28ede6b51ac8f29 rdf:first sg:person.016575200751.22
90 rdf:rest rdf:nil
91 N7a4554c6ec9b4cd2bdb80e4a533be1da schema:name dimensions_id
92 schema:value pub.1032736061
93 rdf:type schema:PropertyValue
94 N7ccb542d2a3941e8bb24117400e9e41d schema:volumeNumber 56
95 rdf:type schema:PublicationVolume
96 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
97 schema:name Engineering
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
100 schema:name Chemical Engineering
101 rdf:type schema:DefinedTerm
102 sg:journal.1136087 schema:issn 0965-5441
103 1555-6239
104 schema:name Petroleum Chemistry
105 rdf:type schema:Periodical
106 sg:person.012752707525.57 schema:affiliation https://www.grid.ac/institutes/grid.435325.6
107 schema:familyName Bildyukevich
108 schema:givenName A. V.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012752707525.57
110 rdf:type schema:Person
111 sg:person.015347726635.04 schema:affiliation https://www.grid.ac/institutes/grid.435325.6
112 schema:familyName Plisko
113 schema:givenName T. V.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015347726635.04
115 rdf:type schema:Person
116 sg:person.016575200751.22 schema:affiliation https://www.grid.ac/institutes/grid.435325.6
117 schema:familyName Usosky
118 schema:givenName V. V.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016575200751.22
120 rdf:type schema:Person
121 sg:pub.10.1007/978-94-009-1766-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034600515
122 https://doi.org/10.1007/978-94-009-1766-8
123 rdf:type schema:CreativeWork
124 sg:pub.10.1134/s0965544111070073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026424197
125 https://doi.org/10.1134/s0965544111070073
126 rdf:type schema:CreativeWork
127 sg:pub.10.1134/s0965544115040064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001561884
128 https://doi.org/10.1134/s0965544115040064
129 rdf:type schema:CreativeWork
130 sg:pub.10.1134/s0965545x1302003x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015127232
131 https://doi.org/10.1134/s0965545x1302003x
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/0470020393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661236
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0032-3861(94)90486-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050166485
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0376-7388(92)80134-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053386668
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0376-7388(92)80135-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012010379
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/0376-7388(93)e0136-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028204528
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/0376-7388(95)00256-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031367997
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/0376-7388(96)00088-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013940914
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.ces.2004.06.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034902326
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ces.2015.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013366759
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.desal.2005.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034906268
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.desal.2007.09.090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049356489
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.desal.2012.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046847681
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.desal.2014.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043121729
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.memsci.2004.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016425683
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.memsci.2004.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000096919
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.memsci.2004.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009457620
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.memsci.2004.10.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026288008
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.memsci.2009.07.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038857009
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.memsci.2010.07.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018016820
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.memsci.2011.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050463140
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.memsci.2011.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040735072
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.memsci.2013.01.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016646638
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.memsci.2013.10.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029040873
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.memsci.2014.04.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027523546
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.progpolymsci.2012.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024484620
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0009-2509(99)00371-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047982528
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0011-9164(02)00282-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027864116
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0011-9164(02)00724-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000463903
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0032-3861(96)00753-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018158166
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/s0142-9418(02)00107-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053486731
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s0376-7388(00)00414-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015284608
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/s0376-7388(00)00665-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008086002
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/s0376-7388(01)00370-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020289063
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/s0376-7388(02)00286-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010411172
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/s0376-7388(96)00249-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005121120
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/s0376-7388(96)00274-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048602053
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/s0376-7388(97)00267-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028934161
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/s0376-7388(99)00122-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024735367
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/s0376-7388(99)00278-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025335428
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/s1383-5866(03)00009-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039581966
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1021/acs.iecr.5b01631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055090416
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1021/ie9802111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055647140
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1021/ma00234a008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056184909
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1021/ma9508966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056205131
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.435325.6 schema:alternateName Institute of Physical and Organic Chemistry
222 schema:name Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, ul. Surganova 13, 220072, Minsk, Belarus
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...