Elaboration of composite hollow fiber membranes with selective layer from poly[1-(trimethylsylil)1-propyne] for regeneration of aqueous alkanolamine solutions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-12

AUTHORS

V. V. Volkov, A. V. Bildukevich, G. A. Dibrov, V. V. Usoskiy, V. P. Kasperchik, V. P. Vasilevsky, E. G. Novitsky

ABSTRACT

The results of research on elaboration of the hollow fiber composite membranes for regeneration of aqueous solutions of alkanolamines in membrane gas-liquid contactor are presented in this work. Asymmetric polysulfone (PSF) hollow fiber UF membranes were used as a porous support, poly[1-(trimethylsylil)-1-propyne] (PTMSP) was employed as a diffusion layer. The influence of PSF hollow fiber casting conditions on hydraulic permeability was studied. Samples of composite membranes were obtained with a defectfree layer of PTMSP and carbon dioxide permeance of 0.26 m3 (STP) (m2 h bar)−1. It was revealed by SEM that the thickness of the PTMSP separation layer is 2.5 microns, where in X-ray spectrometry analysis data and calculations according to resistance-in-series model discovered that the selective layer penetration depth to the pores of the support was 1.4 microns. Calculation by resistance-in-series model showed that 98.6% of resistance to the gas transport is attributed to PTMSP, partially intruded in the pores of the support. Chemical stability of materials which comprise composite membrane makes promising their using for regeneration of aqueous solutions of alkanolamines (pH > 11) from carbon dioxide at a temperature of 100°C and a pressure drop of 10 bar in the membrane gas-liquid contactors. More... »

PAGES

619-626

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544113080148

DOI

http://dx.doi.org/10.1134/s0965544113080148

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025812173


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis RAS, ??, Russia", 
            "National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Volkov", 
        "givenName": "V. V.", 
        "id": "sg:person.013767234240.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013767234240.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physical and Organic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.435325.6", 
          "name": [
            "Institute of Physical Organic Chemistry, National Academy of Sciences, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bildukevich", 
        "givenName": "A. V.", 
        "id": "sg:person.010275243651.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275243651.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Topchiev Institute of Petrochemical Synthesis RAS, ??, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dibrov", 
        "givenName": "G. A.", 
        "id": "sg:person.010662743017.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662743017.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physical and Organic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.435325.6", 
          "name": [
            "Institute of Physical Organic Chemistry, National Academy of Sciences, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Usoskiy", 
        "givenName": "V. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physical and Organic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.435325.6", 
          "name": [
            "Institute of Physical Organic Chemistry, National Academy of Sciences, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kasperchik", 
        "givenName": "V. P.", 
        "id": "sg:person.011505643405.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505643405.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Topchiev Institute of Petrochemical Synthesis RAS, ??, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasilevsky", 
        "givenName": "V. P.", 
        "id": "sg:person.012255704017.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012255704017.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Topchiev Institute of Petrochemical Synthesis RAS, ??, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Novitsky", 
        "givenName": "E. G.", 
        "id": "sg:person.014400640047.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014400640047.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1750-5836(07)00094-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001826784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2009.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002624034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2012.08.568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003710885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-0488(20000115)38:2<273::aid-polb1>3.0.co;2-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010285477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0376-7388(00)83149-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017334949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2011.10.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018920915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0376-7388(95)00214-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019369757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2009.01.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022617086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0376-7388(00)82312-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022887913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2007.02.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024180898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2011.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024503580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0376-7388(00)83150-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025099724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0950-4214(89)80021-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026334735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2012.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030538733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1001-0742(08)60002-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032657333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pola.10757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038501122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0376-7388(00)80267-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039779838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2011.08.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043657902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.seppur.2006.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052900119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie040264k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055597842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie040264k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055597842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie050547s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055599067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie050547s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055599067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00363a061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055726564"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "The results of research on elaboration of the hollow fiber composite membranes for regeneration of aqueous solutions of alkanolamines in membrane gas-liquid contactor are presented in this work. Asymmetric polysulfone (PSF) hollow fiber UF membranes were used as a porous support, poly[1-(trimethylsylil)-1-propyne] (PTMSP) was employed as a diffusion layer. The influence of PSF hollow fiber casting conditions on hydraulic permeability was studied. Samples of composite membranes were obtained with a defectfree layer of PTMSP and carbon dioxide permeance of 0.26 m3 (STP) (m2 h bar)\u22121. It was revealed by SEM that the thickness of the PTMSP separation layer is 2.5 microns, where in X-ray spectrometry analysis data and calculations according to resistance-in-series model discovered that the selective layer penetration depth to the pores of the support was 1.4 microns. Calculation by resistance-in-series model showed that 98.6% of resistance to the gas transport is attributed to PTMSP, partially intruded in the pores of the support. Chemical stability of materials which comprise composite membrane makes promising their using for regeneration of aqueous solutions of alkanolamines (pH > 11) from carbon dioxide at a temperature of 100\u00b0C and a pressure drop of 10 bar in the membrane gas-liquid contactors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0965544113080148", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "name": "Elaboration of composite hollow fiber membranes with selective layer from poly[1-(trimethylsylil)1-propyne] for regeneration of aqueous alkanolamine solutions", 
    "pagination": "619-626", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7af978b2e01ba6f19ab854958c0c6b0c64455f9c4832a1a5faa098068d19665d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544113080148"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025812173"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544113080148", 
      "https://app.dimensions.ai/details/publication/pub.1025812173"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0965544113080148"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544113080148'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544113080148'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544113080148'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544113080148'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544113080148 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N05e0919827414db69fe41a8ca195320a
4 schema:citation https://doi.org/10.1002/(sici)1099-0488(20000115)38:2<273::aid-polb1>3.0.co;2-x
5 https://doi.org/10.1002/pola.10757
6 https://doi.org/10.1016/0376-7388(95)00214-6
7 https://doi.org/10.1016/0950-4214(89)80021-0
8 https://doi.org/10.1016/j.desal.2007.02.083
9 https://doi.org/10.1016/j.memsci.2009.01.050
10 https://doi.org/10.1016/j.memsci.2009.05.009
11 https://doi.org/10.1016/j.memsci.2011.05.003
12 https://doi.org/10.1016/j.memsci.2011.08.058
13 https://doi.org/10.1016/j.memsci.2011.10.035
14 https://doi.org/10.1016/j.memsci.2012.02.008
15 https://doi.org/10.1016/j.proeng.2012.08.568
16 https://doi.org/10.1016/j.seppur.2006.04.013
17 https://doi.org/10.1016/s0376-7388(00)80267-7
18 https://doi.org/10.1016/s0376-7388(00)82312-1
19 https://doi.org/10.1016/s0376-7388(00)83149-x
20 https://doi.org/10.1016/s0376-7388(00)83150-6
21 https://doi.org/10.1016/s1001-0742(08)60002-9
22 https://doi.org/10.1016/s1750-5836(07)00094-1
23 https://doi.org/10.1021/ie040264k
24 https://doi.org/10.1021/ie050547s
25 https://doi.org/10.1021/ja00363a061
26 schema:datePublished 2013-12
27 schema:datePublishedReg 2013-12-01
28 schema:description The results of research on elaboration of the hollow fiber composite membranes for regeneration of aqueous solutions of alkanolamines in membrane gas-liquid contactor are presented in this work. Asymmetric polysulfone (PSF) hollow fiber UF membranes were used as a porous support, poly[1-(trimethylsylil)-1-propyne] (PTMSP) was employed as a diffusion layer. The influence of PSF hollow fiber casting conditions on hydraulic permeability was studied. Samples of composite membranes were obtained with a defectfree layer of PTMSP and carbon dioxide permeance of 0.26 m3 (STP) (m2 h bar)−1. It was revealed by SEM that the thickness of the PTMSP separation layer is 2.5 microns, where in X-ray spectrometry analysis data and calculations according to resistance-in-series model discovered that the selective layer penetration depth to the pores of the support was 1.4 microns. Calculation by resistance-in-series model showed that 98.6% of resistance to the gas transport is attributed to PTMSP, partially intruded in the pores of the support. Chemical stability of materials which comprise composite membrane makes promising their using for regeneration of aqueous solutions of alkanolamines (pH > 11) from carbon dioxide at a temperature of 100°C and a pressure drop of 10 bar in the membrane gas-liquid contactors.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N1e251f92e9fe4c05abf7eba45ba32a6f
33 Ne93fed90ddc543a4b9262020d28e6393
34 sg:journal.1136087
35 schema:name Elaboration of composite hollow fiber membranes with selective layer from poly[1-(trimethylsylil)1-propyne] for regeneration of aqueous alkanolamine solutions
36 schema:pagination 619-626
37 schema:productId N126bab95899a4faea7d10473de167659
38 N73f959a077444b28bfa226d9792da040
39 N8b9f4635a5b0443b826ae9f5fc8cad82
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025812173
41 https://doi.org/10.1134/s0965544113080148
42 schema:sdDatePublished 2019-04-10T14:59
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N90d0661773204847aa612a61641f0669
45 schema:url http://link.springer.com/10.1134/S0965544113080148
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N05e0919827414db69fe41a8ca195320a rdf:first sg:person.013767234240.60
50 rdf:rest Nf8569b9ac7b44d4891c4ae37d914e970
51 N0cd4ffab95f64d06bee1a8716f5a7e62 rdf:first sg:person.014400640047.92
52 rdf:rest rdf:nil
53 N126bab95899a4faea7d10473de167659 schema:name readcube_id
54 schema:value 7af978b2e01ba6f19ab854958c0c6b0c64455f9c4832a1a5faa098068d19665d
55 rdf:type schema:PropertyValue
56 N1e251f92e9fe4c05abf7eba45ba32a6f schema:issueNumber 8
57 rdf:type schema:PublicationIssue
58 N342c5facf0f843c2b62a8804972c91ed rdf:first N5b03784c347b4230a7ece3fa34b9ded3
59 rdf:rest N542c9e3b85c64f3282e73ec18486f23e
60 N50f13018451746f0a4c80c865e10c948 schema:name Topchiev Institute of Petrochemical Synthesis RAS, ??, Russia
61 rdf:type schema:Organization
62 N542c9e3b85c64f3282e73ec18486f23e rdf:first sg:person.011505643405.28
63 rdf:rest Nbbe486d5d9fd4155b28f20f56bff049b
64 N5b03784c347b4230a7ece3fa34b9ded3 schema:affiliation https://www.grid.ac/institutes/grid.435325.6
65 schema:familyName Usoskiy
66 schema:givenName V. V.
67 rdf:type schema:Person
68 N70ee9bf0321e475e9f58b0f0e64d93f1 schema:name Topchiev Institute of Petrochemical Synthesis RAS, ??, Russia
69 rdf:type schema:Organization
70 N73f959a077444b28bfa226d9792da040 schema:name dimensions_id
71 schema:value pub.1025812173
72 rdf:type schema:PropertyValue
73 N8b9f4635a5b0443b826ae9f5fc8cad82 schema:name doi
74 schema:value 10.1134/s0965544113080148
75 rdf:type schema:PropertyValue
76 N90d0661773204847aa612a61641f0669 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nb5e46a20e68649d0ad0b4803806f86d0 rdf:first sg:person.010662743017.14
79 rdf:rest N342c5facf0f843c2b62a8804972c91ed
80 Nbbe486d5d9fd4155b28f20f56bff049b rdf:first sg:person.012255704017.31
81 rdf:rest N0cd4ffab95f64d06bee1a8716f5a7e62
82 Nd9c4467d915d40cda8a8f3f77e434031 schema:name Topchiev Institute of Petrochemical Synthesis RAS, ??, Russia
83 rdf:type schema:Organization
84 Ne93fed90ddc543a4b9262020d28e6393 schema:volumeNumber 53
85 rdf:type schema:PublicationVolume
86 Nf8569b9ac7b44d4891c4ae37d914e970 rdf:first sg:person.010275243651.54
87 rdf:rest Nb5e46a20e68649d0ad0b4803806f86d0
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
92 schema:name Chemical Engineering
93 rdf:type schema:DefinedTerm
94 sg:journal.1136087 schema:issn 0965-5441
95 1555-6239
96 schema:name Petroleum Chemistry
97 rdf:type schema:Periodical
98 sg:person.010275243651.54 schema:affiliation https://www.grid.ac/institutes/grid.435325.6
99 schema:familyName Bildukevich
100 schema:givenName A. V.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275243651.54
102 rdf:type schema:Person
103 sg:person.010662743017.14 schema:affiliation N50f13018451746f0a4c80c865e10c948
104 schema:familyName Dibrov
105 schema:givenName G. A.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662743017.14
107 rdf:type schema:Person
108 sg:person.011505643405.28 schema:affiliation https://www.grid.ac/institutes/grid.435325.6
109 schema:familyName Kasperchik
110 schema:givenName V. P.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505643405.28
112 rdf:type schema:Person
113 sg:person.012255704017.31 schema:affiliation Nd9c4467d915d40cda8a8f3f77e434031
114 schema:familyName Vasilevsky
115 schema:givenName V. P.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012255704017.31
117 rdf:type schema:Person
118 sg:person.013767234240.60 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
119 schema:familyName Volkov
120 schema:givenName V. V.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013767234240.60
122 rdf:type schema:Person
123 sg:person.014400640047.92 schema:affiliation N70ee9bf0321e475e9f58b0f0e64d93f1
124 schema:familyName Novitsky
125 schema:givenName E. G.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014400640047.92
127 rdf:type schema:Person
128 https://doi.org/10.1002/(sici)1099-0488(20000115)38:2<273::aid-polb1>3.0.co;2-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010285477
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/pola.10757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038501122
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0376-7388(95)00214-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019369757
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0950-4214(89)80021-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026334735
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.desal.2007.02.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024180898
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.memsci.2009.01.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022617086
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.memsci.2009.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002624034
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.memsci.2011.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024503580
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.memsci.2011.08.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043657902
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.memsci.2011.10.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018920915
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.memsci.2012.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030538733
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.proeng.2012.08.568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003710885
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.seppur.2006.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052900119
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/s0376-7388(00)80267-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039779838
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0376-7388(00)82312-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022887913
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0376-7388(00)83149-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017334949
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0376-7388(00)83150-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025099724
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s1001-0742(08)60002-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032657333
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s1750-5836(07)00094-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001826784
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1021/ie040264k schema:sameAs https://app.dimensions.ai/details/publication/pub.1055597842
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1021/ie050547s schema:sameAs https://app.dimensions.ai/details/publication/pub.1055599067
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1021/ja00363a061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055726564
171 rdf:type schema:CreativeWork
172 https://www.grid.ac/institutes/grid.183446.c schema:alternateName Moscow Engineering Physics Institute
173 schema:name National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow, Russia
174 Topchiev Institute of Petrochemical Synthesis RAS, ??, Russia
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.435325.6 schema:alternateName Institute of Physical and Organic Chemistry
177 schema:name Institute of Physical Organic Chemistry, National Academy of Sciences, Minsk, Belarus
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...