Elaboration of composite hollow fiber membranes with selective layer from poly[1-(trimethylsylil)1-propyne] for regeneration of aqueous alkanolamine solutions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-12

AUTHORS

V. V. Volkov, A. V. Bildukevich, G. A. Dibrov, V. V. Usoskiy, V. P. Kasperchik, V. P. Vasilevsky, E. G. Novitsky

ABSTRACT

The results of research on elaboration of the hollow fiber composite membranes for regeneration of aqueous solutions of alkanolamines in membrane gas-liquid contactor are presented in this work. Asymmetric polysulfone (PSF) hollow fiber UF membranes were used as a porous support, poly[1-(trimethylsylil)-1-propyne] (PTMSP) was employed as a diffusion layer. The influence of PSF hollow fiber casting conditions on hydraulic permeability was studied. Samples of composite membranes were obtained with a defectfree layer of PTMSP and carbon dioxide permeance of 0.26 m3 (STP) (m2 h bar)−1. It was revealed by SEM that the thickness of the PTMSP separation layer is 2.5 microns, where in X-ray spectrometry analysis data and calculations according to resistance-in-series model discovered that the selective layer penetration depth to the pores of the support was 1.4 microns. Calculation by resistance-in-series model showed that 98.6% of resistance to the gas transport is attributed to PTMSP, partially intruded in the pores of the support. Chemical stability of materials which comprise composite membrane makes promising their using for regeneration of aqueous solutions of alkanolamines (pH > 11) from carbon dioxide at a temperature of 100°C and a pressure drop of 10 bar in the membrane gas-liquid contactors. More... »

PAGES

619-626

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544113080148

DOI

http://dx.doi.org/10.1134/s0965544113080148

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025812173


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis RAS, ??, Russia", 
            "National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Volkov", 
        "givenName": "V. V.", 
        "id": "sg:person.013767234240.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013767234240.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physical and Organic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.435325.6", 
          "name": [
            "Institute of Physical Organic Chemistry, National Academy of Sciences, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bildukevich", 
        "givenName": "A. V.", 
        "id": "sg:person.010275243651.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275243651.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Topchiev Institute of Petrochemical Synthesis RAS, ??, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dibrov", 
        "givenName": "G. A.", 
        "id": "sg:person.010662743017.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662743017.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physical and Organic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.435325.6", 
          "name": [
            "Institute of Physical Organic Chemistry, National Academy of Sciences, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Usoskiy", 
        "givenName": "V. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physical and Organic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.435325.6", 
          "name": [
            "Institute of Physical Organic Chemistry, National Academy of Sciences, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kasperchik", 
        "givenName": "V. P.", 
        "id": "sg:person.011505643405.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505643405.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Topchiev Institute of Petrochemical Synthesis RAS, ??, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasilevsky", 
        "givenName": "V. P.", 
        "id": "sg:person.012255704017.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012255704017.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Topchiev Institute of Petrochemical Synthesis RAS, ??, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Novitsky", 
        "givenName": "E. G.", 
        "id": "sg:person.014400640047.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014400640047.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1750-5836(07)00094-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001826784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2009.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002624034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2012.08.568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003710885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-0488(20000115)38:2<273::aid-polb1>3.0.co;2-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010285477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0376-7388(00)83149-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017334949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2011.10.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018920915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0376-7388(95)00214-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019369757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2009.01.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022617086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0376-7388(00)82312-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022887913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2007.02.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024180898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2011.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024503580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0376-7388(00)83150-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025099724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0950-4214(89)80021-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026334735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2012.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030538733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1001-0742(08)60002-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032657333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pola.10757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038501122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0376-7388(00)80267-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039779838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2011.08.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043657902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.seppur.2006.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052900119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie040264k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055597842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie040264k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055597842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie050547s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055599067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie050547s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055599067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00363a061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055726564"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "The results of research on elaboration of the hollow fiber composite membranes for regeneration of aqueous solutions of alkanolamines in membrane gas-liquid contactor are presented in this work. Asymmetric polysulfone (PSF) hollow fiber UF membranes were used as a porous support, poly[1-(trimethylsylil)-1-propyne] (PTMSP) was employed as a diffusion layer. The influence of PSF hollow fiber casting conditions on hydraulic permeability was studied. Samples of composite membranes were obtained with a defectfree layer of PTMSP and carbon dioxide permeance of 0.26 m3 (STP) (m2 h bar)\u22121. It was revealed by SEM that the thickness of the PTMSP separation layer is 2.5 microns, where in X-ray spectrometry analysis data and calculations according to resistance-in-series model discovered that the selective layer penetration depth to the pores of the support was 1.4 microns. Calculation by resistance-in-series model showed that 98.6% of resistance to the gas transport is attributed to PTMSP, partially intruded in the pores of the support. Chemical stability of materials which comprise composite membrane makes promising their using for regeneration of aqueous solutions of alkanolamines (pH > 11) from carbon dioxide at a temperature of 100\u00b0C and a pressure drop of 10 bar in the membrane gas-liquid contactors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0965544113080148", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "name": "Elaboration of composite hollow fiber membranes with selective layer from poly[1-(trimethylsylil)1-propyne] for regeneration of aqueous alkanolamine solutions", 
    "pagination": "619-626", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7af978b2e01ba6f19ab854958c0c6b0c64455f9c4832a1a5faa098068d19665d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544113080148"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025812173"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544113080148", 
      "https://app.dimensions.ai/details/publication/pub.1025812173"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0965544113080148"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544113080148'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544113080148'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544113080148'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544113080148'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544113080148 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N423d952da46e4049a023ea23d25832e6
4 schema:citation https://doi.org/10.1002/(sici)1099-0488(20000115)38:2<273::aid-polb1>3.0.co;2-x
5 https://doi.org/10.1002/pola.10757
6 https://doi.org/10.1016/0376-7388(95)00214-6
7 https://doi.org/10.1016/0950-4214(89)80021-0
8 https://doi.org/10.1016/j.desal.2007.02.083
9 https://doi.org/10.1016/j.memsci.2009.01.050
10 https://doi.org/10.1016/j.memsci.2009.05.009
11 https://doi.org/10.1016/j.memsci.2011.05.003
12 https://doi.org/10.1016/j.memsci.2011.08.058
13 https://doi.org/10.1016/j.memsci.2011.10.035
14 https://doi.org/10.1016/j.memsci.2012.02.008
15 https://doi.org/10.1016/j.proeng.2012.08.568
16 https://doi.org/10.1016/j.seppur.2006.04.013
17 https://doi.org/10.1016/s0376-7388(00)80267-7
18 https://doi.org/10.1016/s0376-7388(00)82312-1
19 https://doi.org/10.1016/s0376-7388(00)83149-x
20 https://doi.org/10.1016/s0376-7388(00)83150-6
21 https://doi.org/10.1016/s1001-0742(08)60002-9
22 https://doi.org/10.1016/s1750-5836(07)00094-1
23 https://doi.org/10.1021/ie040264k
24 https://doi.org/10.1021/ie050547s
25 https://doi.org/10.1021/ja00363a061
26 schema:datePublished 2013-12
27 schema:datePublishedReg 2013-12-01
28 schema:description The results of research on elaboration of the hollow fiber composite membranes for regeneration of aqueous solutions of alkanolamines in membrane gas-liquid contactor are presented in this work. Asymmetric polysulfone (PSF) hollow fiber UF membranes were used as a porous support, poly[1-(trimethylsylil)-1-propyne] (PTMSP) was employed as a diffusion layer. The influence of PSF hollow fiber casting conditions on hydraulic permeability was studied. Samples of composite membranes were obtained with a defectfree layer of PTMSP and carbon dioxide permeance of 0.26 m3 (STP) (m2 h bar)−1. It was revealed by SEM that the thickness of the PTMSP separation layer is 2.5 microns, where in X-ray spectrometry analysis data and calculations according to resistance-in-series model discovered that the selective layer penetration depth to the pores of the support was 1.4 microns. Calculation by resistance-in-series model showed that 98.6% of resistance to the gas transport is attributed to PTMSP, partially intruded in the pores of the support. Chemical stability of materials which comprise composite membrane makes promising their using for regeneration of aqueous solutions of alkanolamines (pH > 11) from carbon dioxide at a temperature of 100°C and a pressure drop of 10 bar in the membrane gas-liquid contactors.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N3efdc2bb5c444a688af204cc22588959
33 Nfd133f84d502491395850d8f3309e69c
34 sg:journal.1136087
35 schema:name Elaboration of composite hollow fiber membranes with selective layer from poly[1-(trimethylsylil)1-propyne] for regeneration of aqueous alkanolamine solutions
36 schema:pagination 619-626
37 schema:productId N20c528e33d1f45b8a1a82cc0e7c73519
38 N35748af6614c48fab0d3ced28de1cf3e
39 Nc6e5c1fd913d47bbb79bc6f19a141cce
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025812173
41 https://doi.org/10.1134/s0965544113080148
42 schema:sdDatePublished 2019-04-10T14:59
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nf4adbce5090d464d93a81a174cf8ca31
45 schema:url http://link.springer.com/10.1134/S0965544113080148
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N20c528e33d1f45b8a1a82cc0e7c73519 schema:name dimensions_id
50 schema:value pub.1025812173
51 rdf:type schema:PropertyValue
52 N35748af6614c48fab0d3ced28de1cf3e schema:name readcube_id
53 schema:value 7af978b2e01ba6f19ab854958c0c6b0c64455f9c4832a1a5faa098068d19665d
54 rdf:type schema:PropertyValue
55 N3b725a246b3e42cbb81edefb6f1c4ec5 rdf:first sg:person.011505643405.28
56 rdf:rest Naa60279b1b6e4d0eaf78ccf7d05799c5
57 N3efdc2bb5c444a688af204cc22588959 schema:volumeNumber 53
58 rdf:type schema:PublicationVolume
59 N423d952da46e4049a023ea23d25832e6 rdf:first sg:person.013767234240.60
60 rdf:rest Na6bac593b096476f88bf6ca53ec74976
61 N5df1a4db6c6a44e09f91af4038d2cfcf schema:name Topchiev Institute of Petrochemical Synthesis RAS, ??, Russia
62 rdf:type schema:Organization
63 Na6bac593b096476f88bf6ca53ec74976 rdf:first sg:person.010275243651.54
64 rdf:rest Ncec3216c2edf4873b5755cae8bcdc959
65 Naa60279b1b6e4d0eaf78ccf7d05799c5 rdf:first sg:person.012255704017.31
66 rdf:rest Nc447b5260c704e17bbae6955957798a2
67 Nb45bd1b0c986410a87410c6cbdc9bdcc schema:name Topchiev Institute of Petrochemical Synthesis RAS, ??, Russia
68 rdf:type schema:Organization
69 Nbe495845815e4057b16dc2dd9ffdd5cb rdf:first Ncc9eac4537a446c19cf1d18519709243
70 rdf:rest N3b725a246b3e42cbb81edefb6f1c4ec5
71 Nc447b5260c704e17bbae6955957798a2 rdf:first sg:person.014400640047.92
72 rdf:rest rdf:nil
73 Nc6e5c1fd913d47bbb79bc6f19a141cce schema:name doi
74 schema:value 10.1134/s0965544113080148
75 rdf:type schema:PropertyValue
76 Ncc9eac4537a446c19cf1d18519709243 schema:affiliation https://www.grid.ac/institutes/grid.435325.6
77 schema:familyName Usoskiy
78 schema:givenName V. V.
79 rdf:type schema:Person
80 Ncec3216c2edf4873b5755cae8bcdc959 rdf:first sg:person.010662743017.14
81 rdf:rest Nbe495845815e4057b16dc2dd9ffdd5cb
82 Nf4adbce5090d464d93a81a174cf8ca31 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nf617b48e25ac4b398104f02b3d23ce5a schema:name Topchiev Institute of Petrochemical Synthesis RAS, ??, Russia
85 rdf:type schema:Organization
86 Nfd133f84d502491395850d8f3309e69c schema:issueNumber 8
87 rdf:type schema:PublicationIssue
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
92 schema:name Chemical Engineering
93 rdf:type schema:DefinedTerm
94 sg:journal.1136087 schema:issn 0965-5441
95 1555-6239
96 schema:name Petroleum Chemistry
97 rdf:type schema:Periodical
98 sg:person.010275243651.54 schema:affiliation https://www.grid.ac/institutes/grid.435325.6
99 schema:familyName Bildukevich
100 schema:givenName A. V.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275243651.54
102 rdf:type schema:Person
103 sg:person.010662743017.14 schema:affiliation Nb45bd1b0c986410a87410c6cbdc9bdcc
104 schema:familyName Dibrov
105 schema:givenName G. A.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662743017.14
107 rdf:type schema:Person
108 sg:person.011505643405.28 schema:affiliation https://www.grid.ac/institutes/grid.435325.6
109 schema:familyName Kasperchik
110 schema:givenName V. P.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505643405.28
112 rdf:type schema:Person
113 sg:person.012255704017.31 schema:affiliation N5df1a4db6c6a44e09f91af4038d2cfcf
114 schema:familyName Vasilevsky
115 schema:givenName V. P.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012255704017.31
117 rdf:type schema:Person
118 sg:person.013767234240.60 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
119 schema:familyName Volkov
120 schema:givenName V. V.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013767234240.60
122 rdf:type schema:Person
123 sg:person.014400640047.92 schema:affiliation Nf617b48e25ac4b398104f02b3d23ce5a
124 schema:familyName Novitsky
125 schema:givenName E. G.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014400640047.92
127 rdf:type schema:Person
128 https://doi.org/10.1002/(sici)1099-0488(20000115)38:2<273::aid-polb1>3.0.co;2-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010285477
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/pola.10757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038501122
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0376-7388(95)00214-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019369757
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0950-4214(89)80021-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026334735
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.desal.2007.02.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024180898
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.memsci.2009.01.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022617086
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.memsci.2009.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002624034
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.memsci.2011.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024503580
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.memsci.2011.08.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043657902
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.memsci.2011.10.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018920915
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.memsci.2012.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030538733
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.proeng.2012.08.568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003710885
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.seppur.2006.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052900119
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/s0376-7388(00)80267-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039779838
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0376-7388(00)82312-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022887913
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0376-7388(00)83149-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017334949
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0376-7388(00)83150-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025099724
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s1001-0742(08)60002-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032657333
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s1750-5836(07)00094-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001826784
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1021/ie040264k schema:sameAs https://app.dimensions.ai/details/publication/pub.1055597842
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1021/ie050547s schema:sameAs https://app.dimensions.ai/details/publication/pub.1055599067
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1021/ja00363a061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055726564
171 rdf:type schema:CreativeWork
172 https://www.grid.ac/institutes/grid.183446.c schema:alternateName Moscow Engineering Physics Institute
173 schema:name National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow, Russia
174 Topchiev Institute of Petrochemical Synthesis RAS, ??, Russia
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.435325.6 schema:alternateName Institute of Physical and Organic Chemistry
177 schema:name Institute of Physical Organic Chemistry, National Academy of Sciences, Minsk, Belarus
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...