Structural and morphological features of the formation of polyfunctional nanocatalysts in a reverse microemulsion medium View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-11-07

AUTHORS

S. N. Khadzhiev, Kh. M. Kadiev, M. Kh. Kadieva

ABSTRACT

The formation of ultrafine and nanosized particles of multicomponent catalysts of the MexOy/Al2O3 and Me2xSy/Al2O3 types (Me = Mo, Ni, Co, Fe) has been studied. Their samples have been synthesized by the thermal decomposition at T ∼ 240°C and P = Patm of reverse microemulsions (MEs) with precursors in the aqueous phase. The ME dispersion medium has been hydrocarbons containing synthetic (AOT, Span 80) or native (resins, asphaltenes, polycyclic aromatics) stabilizers. It has been shown that the mean diameter, structure, and morphology of the two- and three-component ultrafine and nanosized particles synthesized depend on the precursor introduction mode, ME composition, and microemulsion treatment conditions. It has been found that for the synthesis of spherical binary nanoparticles with the core-shell structure, the sequential introduction of precursors is preferable when the particle core phase (Al2O3) is synthesized in the first step and then a component that inevitably becomes the shell (MexOy, MexSy) is generated. More... »

PAGES

374-382

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544113060091

DOI

http://dx.doi.org/10.1134/s0965544113060091

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011832355


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khadzhiev", 
        "givenName": "S. N.", 
        "id": "sg:person.01332170507.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332170507.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadiev", 
        "givenName": "Kh. M.", 
        "id": "sg:person.012531050145.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012531050145.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadieva", 
        "givenName": "M. Kh.", 
        "id": "sg:person.010431675375.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431675375.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1018538424373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022734875", 
          "https://doi.org/10.1023/a:1018538424373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-25789-1_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036530377", 
          "https://doi.org/10.1007/978-0-387-25789-1_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544111060077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032326510", 
          "https://doi.org/10.1134/s0965544111060077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544111010063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005790346", 
          "https://doi.org/10.1134/s0965544111010063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544113050034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035585435", 
          "https://doi.org/10.1134/s0965544113050034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010155203247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034181032", 
          "https://doi.org/10.1023/a:1010155203247"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-11-07", 
    "datePublishedReg": "2013-11-07", 
    "description": "The formation of ultrafine and nanosized particles of multicomponent catalysts of the MexOy/Al2O3 and Me2xSy/Al2O3 types (Me = Mo, Ni, Co, Fe) has been studied. Their samples have been synthesized by the thermal decomposition at T \u223c 240\u00b0C and P = Patm of reverse microemulsions (MEs) with precursors in the aqueous phase. The ME dispersion medium has been hydrocarbons containing synthetic (AOT, Span 80) or native (resins, asphaltenes, polycyclic aromatics) stabilizers. It has been shown that the mean diameter, structure, and morphology of the two- and three-component ultrafine and nanosized particles synthesized depend on the precursor introduction mode, ME composition, and microemulsion treatment conditions. It has been found that for the synthesis of spherical binary nanoparticles with the core-shell structure, the sequential introduction of precursors is preferable when the particle core phase (Al2O3) is synthesized in the first step and then a component that inevitably becomes the shell (MexOy, MexSy) is generated.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965544113060091", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "keywords": [
      "core-shell structure", 
      "reverse microemulsion medium", 
      "multicomponent catalysts", 
      "microemulsion media", 
      "reverse microemulsion", 
      "formation of ultrafine", 
      "binary nanoparticles", 
      "aqueous phase", 
      "ME composition", 
      "introduction mode", 
      "dispersion medium", 
      "Nanosized Particles", 
      "thermal decomposition", 
      "Al2O3 type", 
      "microemulsions", 
      "sequential introduction", 
      "precursors", 
      "mean diameter", 
      "nanocatalyst", 
      "catalyst", 
      "nanoparticles", 
      "ultrafine", 
      "particles", 
      "synthesis", 
      "core phase", 
      "formation", 
      "structure", 
      "Al2O3", 
      "hydrocarbons", 
      "stabilizer", 
      "phase", 
      "treatment conditions", 
      "morphology", 
      "shell", 
      "decomposition", 
      "medium", 
      "composition", 
      "first step", 
      "diameter", 
      "morphological features", 
      "step", 
      "samples", 
      "mode", 
      "introduction", 
      "conditions", 
      "components", 
      "types", 
      "features", 
      "pATM"
    ], 
    "name": "Structural and morphological features of the formation of polyfunctional nanocatalysts in a reverse microemulsion medium", 
    "pagination": "374-382", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011832355"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544113060091"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544113060091", 
      "https://app.dimensions.ai/details/publication/pub.1011832355"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_591.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965544113060091"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544113060091'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544113060091'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544113060091'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544113060091'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      22 PREDICATES      80 URIs      66 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544113060091 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author Nb87316f593084c3ea5ef62567db44a54
4 schema:citation sg:pub.10.1007/978-0-387-25789-1_7
5 sg:pub.10.1023/a:1010155203247
6 sg:pub.10.1023/a:1018538424373
7 sg:pub.10.1134/s0965544111010063
8 sg:pub.10.1134/s0965544111060077
9 sg:pub.10.1134/s0965544113050034
10 schema:datePublished 2013-11-07
11 schema:datePublishedReg 2013-11-07
12 schema:description The formation of ultrafine and nanosized particles of multicomponent catalysts of the MexOy/Al2O3 and Me2xSy/Al2O3 types (Me = Mo, Ni, Co, Fe) has been studied. Their samples have been synthesized by the thermal decomposition at T ∼ 240°C and P = Patm of reverse microemulsions (MEs) with precursors in the aqueous phase. The ME dispersion medium has been hydrocarbons containing synthetic (AOT, Span 80) or native (resins, asphaltenes, polycyclic aromatics) stabilizers. It has been shown that the mean diameter, structure, and morphology of the two- and three-component ultrafine and nanosized particles synthesized depend on the precursor introduction mode, ME composition, and microemulsion treatment conditions. It has been found that for the synthesis of spherical binary nanoparticles with the core-shell structure, the sequential introduction of precursors is preferable when the particle core phase (Al2O3) is synthesized in the first step and then a component that inevitably becomes the shell (MexOy, MexSy) is generated.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N0bb5b044b2284507bb34757a372519ea
17 N98aca348661244dfbd870116b5118e2a
18 sg:journal.1136087
19 schema:keywords Al2O3
20 Al2O3 type
21 ME composition
22 Nanosized Particles
23 aqueous phase
24 binary nanoparticles
25 catalyst
26 components
27 composition
28 conditions
29 core phase
30 core-shell structure
31 decomposition
32 diameter
33 dispersion medium
34 features
35 first step
36 formation
37 formation of ultrafine
38 hydrocarbons
39 introduction
40 introduction mode
41 mean diameter
42 medium
43 microemulsion media
44 microemulsions
45 mode
46 morphological features
47 morphology
48 multicomponent catalysts
49 nanocatalyst
50 nanoparticles
51 pATM
52 particles
53 phase
54 precursors
55 reverse microemulsion
56 reverse microemulsion medium
57 samples
58 sequential introduction
59 shell
60 stabilizer
61 step
62 structure
63 synthesis
64 thermal decomposition
65 treatment conditions
66 types
67 ultrafine
68 schema:name Structural and morphological features of the formation of polyfunctional nanocatalysts in a reverse microemulsion medium
69 schema:pagination 374-382
70 schema:productId N511e2f94722d482b989193cbfc96219d
71 N826a09d71b9040309e04d8bfd3650d6e
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011832355
73 https://doi.org/10.1134/s0965544113060091
74 schema:sdDatePublished 2022-05-20T07:28
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Ndafa49f0f57641bcb5571090bf869ef1
77 schema:url https://doi.org/10.1134/s0965544113060091
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0bb5b044b2284507bb34757a372519ea schema:issueNumber 6
82 rdf:type schema:PublicationIssue
83 N511e2f94722d482b989193cbfc96219d schema:name doi
84 schema:value 10.1134/s0965544113060091
85 rdf:type schema:PropertyValue
86 N826a09d71b9040309e04d8bfd3650d6e schema:name dimensions_id
87 schema:value pub.1011832355
88 rdf:type schema:PropertyValue
89 N98aca348661244dfbd870116b5118e2a schema:volumeNumber 53
90 rdf:type schema:PublicationVolume
91 Na57fd579f4e84280965dd9a2dc0535db rdf:first sg:person.012531050145.44
92 rdf:rest Nfb507c6a6d72498fb55802e624f2dc48
93 Nb87316f593084c3ea5ef62567db44a54 rdf:first sg:person.01332170507.75
94 rdf:rest Na57fd579f4e84280965dd9a2dc0535db
95 Ndafa49f0f57641bcb5571090bf869ef1 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nfb507c6a6d72498fb55802e624f2dc48 rdf:first sg:person.010431675375.32
98 rdf:rest rdf:nil
99 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
100 schema:name Engineering
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
103 schema:name Chemical Engineering
104 rdf:type schema:DefinedTerm
105 sg:journal.1136087 schema:issn 0965-5441
106 1555-6239
107 schema:name Petroleum Chemistry
108 schema:publisher Pleiades Publishing
109 rdf:type schema:Periodical
110 sg:person.010431675375.32 schema:affiliation grid-institutes:grid.423490.8
111 schema:familyName Kadieva
112 schema:givenName M. Kh.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431675375.32
114 rdf:type schema:Person
115 sg:person.012531050145.44 schema:affiliation grid-institutes:grid.423490.8
116 schema:familyName Kadiev
117 schema:givenName Kh. M.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012531050145.44
119 rdf:type schema:Person
120 sg:person.01332170507.75 schema:affiliation grid-institutes:grid.423490.8
121 schema:familyName Khadzhiev
122 schema:givenName S. N.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332170507.75
124 rdf:type schema:Person
125 sg:pub.10.1007/978-0-387-25789-1_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036530377
126 https://doi.org/10.1007/978-0-387-25789-1_7
127 rdf:type schema:CreativeWork
128 sg:pub.10.1023/a:1010155203247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034181032
129 https://doi.org/10.1023/a:1010155203247
130 rdf:type schema:CreativeWork
131 sg:pub.10.1023/a:1018538424373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022734875
132 https://doi.org/10.1023/a:1018538424373
133 rdf:type schema:CreativeWork
134 sg:pub.10.1134/s0965544111010063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005790346
135 https://doi.org/10.1134/s0965544111010063
136 rdf:type schema:CreativeWork
137 sg:pub.10.1134/s0965544111060077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032326510
138 https://doi.org/10.1134/s0965544111060077
139 rdf:type schema:CreativeWork
140 sg:pub.10.1134/s0965544113050034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035585435
141 https://doi.org/10.1134/s0965544113050034
142 rdf:type schema:CreativeWork
143 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
144 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...