Synthesis and use of polyfunctional catalyst nanoparticles for hydroconversion of natural bitumen View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-09-18

AUTHORS

Kh. M. Kadiev, S. N. Khadzhiev, M. Kh. Kadieva

ABSTRACT

The results of the hydroconversion of high-molecular-mass bitumen components in a mixture with light gasoil after catalytic cracking in the presence of in situ synthesized novel polyfunctional nanocatalysts are presented. The influence of the composition and different modes of introduction of catalyst precursors on the conversion of the high-molecular-mass components and the yield of polycondensation products has been studied. The size, structure, and morphology of in situ forming nanoheterogeneous catalyst particles have been investigated. It has been found that binary nanocatalysts based on Fe1 − xS and MoS2 are the most active in the conversion of asphaltenes and the highest degree of desulfurization is achieved with the use of (Ni3S2 + MoS2)/Al2O3 and (Co9S8 + MoS2)/Al2O3 nanocatalysts. More... »

PAGES

298-308

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965544113050034

DOI

http://dx.doi.org/10.1134/s0965544113050034

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035585435


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadiev", 
        "givenName": "Kh. M.", 
        "id": "sg:person.012531050145.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012531050145.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khadzhiev", 
        "givenName": "S. N.", 
        "id": "sg:person.01332170507.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332170507.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadieva", 
        "givenName": "M. Kh.", 
        "id": "sg:person.010431675375.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431675375.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.3103/s0361521910060042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011076462", 
          "https://doi.org/10.3103/s0361521910060042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544111060077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032326510", 
          "https://doi.org/10.1134/s0965544111060077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544111010063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005790346", 
          "https://doi.org/10.1134/s0965544111010063"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-09-18", 
    "datePublishedReg": "2013-09-18", 
    "description": "The results of the hydroconversion of high-molecular-mass bitumen components in a mixture with light gasoil after catalytic cracking in the presence of in situ synthesized novel polyfunctional nanocatalysts are presented. The influence of the composition and different modes of introduction of catalyst precursors on the conversion of the high-molecular-mass components and the yield of polycondensation products has been studied. The size, structure, and morphology of in situ forming nanoheterogeneous catalyst particles have been investigated. It has been found that binary nanocatalysts based on Fe1 \u2212 xS and MoS2 are the most active in the conversion of asphaltenes and the highest degree of desulfurization is achieved with the use of (Ni3S2 + MoS2)/Al2O3 and (Co9S8 + MoS2)/Al2O3 nanocatalysts.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965544113050034", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136087", 
        "issn": [
          "0965-5441", 
          "1555-6239"
        ], 
        "name": "Petroleum Chemistry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "keywords": [
      "conversion of asphaltenes", 
      "binary nanocatalysts", 
      "catalyst nanoparticles", 
      "catalyst precursors", 
      "polycondensation products", 
      "bitumen components", 
      "catalyst particles", 
      "nanocatalysts", 
      "catalytic cracking", 
      "light gasoil", 
      "natural bitumen", 
      "hydroconversion", 
      "conversion", 
      "mass components", 
      "nanoparticles", 
      "asphaltenes", 
      "desulfurization", 
      "situ", 
      "MoS2", 
      "synthesis", 
      "gasoil", 
      "Fe1", 
      "precursors", 
      "mixture", 
      "bitumen", 
      "particles", 
      "morphology", 
      "yield", 
      "products", 
      "composition", 
      "structure", 
      "high degree", 
      "presence", 
      "different modes", 
      "size", 
      "cracking", 
      "mode", 
      "components", 
      "introduction", 
      "influence", 
      "use", 
      "degree", 
      "results", 
      "Xs", 
      "mass bitumen components", 
      "novel polyfunctional nanocatalysts", 
      "polyfunctional nanocatalysts", 
      "nanoheterogeneous catalyst particles", 
      "polyfunctional catalyst nanoparticles"
    ], 
    "name": "Synthesis and use of polyfunctional catalyst nanoparticles for hydroconversion of natural bitumen", 
    "pagination": "298-308", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035585435"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965544113050034"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965544113050034", 
      "https://app.dimensions.ai/details/publication/pub.1035585435"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_585.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965544113050034"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965544113050034'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965544113050034'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965544113050034'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965544113050034'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      22 PREDICATES      77 URIs      66 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965544113050034 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N1333cbf8b7124e0d870148252d39b6e8
4 schema:citation sg:pub.10.1134/s0965544111010063
5 sg:pub.10.1134/s0965544111060077
6 sg:pub.10.3103/s0361521910060042
7 schema:datePublished 2013-09-18
8 schema:datePublishedReg 2013-09-18
9 schema:description The results of the hydroconversion of high-molecular-mass bitumen components in a mixture with light gasoil after catalytic cracking in the presence of in situ synthesized novel polyfunctional nanocatalysts are presented. The influence of the composition and different modes of introduction of catalyst precursors on the conversion of the high-molecular-mass components and the yield of polycondensation products has been studied. The size, structure, and morphology of in situ forming nanoheterogeneous catalyst particles have been investigated. It has been found that binary nanocatalysts based on Fe1 − xS and MoS2 are the most active in the conversion of asphaltenes and the highest degree of desulfurization is achieved with the use of (Ni3S2 + MoS2)/Al2O3 and (Co9S8 + MoS2)/Al2O3 nanocatalysts.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N8b9863f0b0a34f6eba15c39f658e8dd8
14 Neaf98e8e8aa0432191a90c3de4ef1dea
15 sg:journal.1136087
16 schema:keywords Fe1
17 MoS2
18 Xs
19 asphaltenes
20 binary nanocatalysts
21 bitumen
22 bitumen components
23 catalyst nanoparticles
24 catalyst particles
25 catalyst precursors
26 catalytic cracking
27 components
28 composition
29 conversion
30 conversion of asphaltenes
31 cracking
32 degree
33 desulfurization
34 different modes
35 gasoil
36 high degree
37 hydroconversion
38 influence
39 introduction
40 light gasoil
41 mass bitumen components
42 mass components
43 mixture
44 mode
45 morphology
46 nanocatalysts
47 nanoheterogeneous catalyst particles
48 nanoparticles
49 natural bitumen
50 novel polyfunctional nanocatalysts
51 particles
52 polycondensation products
53 polyfunctional catalyst nanoparticles
54 polyfunctional nanocatalysts
55 precursors
56 presence
57 products
58 results
59 situ
60 size
61 structure
62 synthesis
63 use
64 yield
65 schema:name Synthesis and use of polyfunctional catalyst nanoparticles for hydroconversion of natural bitumen
66 schema:pagination 298-308
67 schema:productId Nb3cd761bb4c44dafbad50ebc0cd8724c
68 Nf3d0891516764bac8fb81716e402be69
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035585435
70 https://doi.org/10.1134/s0965544113050034
71 schema:sdDatePublished 2022-01-01T18:29
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Na5cf9f6a167045fc988e55d30907ad8c
74 schema:url https://doi.org/10.1134/s0965544113050034
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N1333cbf8b7124e0d870148252d39b6e8 rdf:first sg:person.012531050145.44
79 rdf:rest N1f5d27bd03c64cf4847b31a278132085
80 N167ceb2de6d64056a2e3601c83cc3db2 rdf:first sg:person.010431675375.32
81 rdf:rest rdf:nil
82 N1f5d27bd03c64cf4847b31a278132085 rdf:first sg:person.01332170507.75
83 rdf:rest N167ceb2de6d64056a2e3601c83cc3db2
84 N8b9863f0b0a34f6eba15c39f658e8dd8 schema:volumeNumber 53
85 rdf:type schema:PublicationVolume
86 Na5cf9f6a167045fc988e55d30907ad8c schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nb3cd761bb4c44dafbad50ebc0cd8724c schema:name dimensions_id
89 schema:value pub.1035585435
90 rdf:type schema:PropertyValue
91 Neaf98e8e8aa0432191a90c3de4ef1dea schema:issueNumber 5
92 rdf:type schema:PublicationIssue
93 Nf3d0891516764bac8fb81716e402be69 schema:name doi
94 schema:value 10.1134/s0965544113050034
95 rdf:type schema:PropertyValue
96 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
97 schema:name Engineering
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
100 schema:name Chemical Engineering
101 rdf:type schema:DefinedTerm
102 sg:journal.1136087 schema:issn 0965-5441
103 1555-6239
104 schema:name Petroleum Chemistry
105 schema:publisher Pleiades Publishing
106 rdf:type schema:Periodical
107 sg:person.010431675375.32 schema:affiliation grid-institutes:grid.423490.8
108 schema:familyName Kadieva
109 schema:givenName M. Kh.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431675375.32
111 rdf:type schema:Person
112 sg:person.012531050145.44 schema:affiliation grid-institutes:grid.423490.8
113 schema:familyName Kadiev
114 schema:givenName Kh. M.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012531050145.44
116 rdf:type schema:Person
117 sg:person.01332170507.75 schema:affiliation grid-institutes:grid.423490.8
118 schema:familyName Khadzhiev
119 schema:givenName S. N.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332170507.75
121 rdf:type schema:Person
122 sg:pub.10.1134/s0965544111010063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005790346
123 https://doi.org/10.1134/s0965544111010063
124 rdf:type schema:CreativeWork
125 sg:pub.10.1134/s0965544111060077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032326510
126 https://doi.org/10.1134/s0965544111060077
127 rdf:type schema:CreativeWork
128 sg:pub.10.3103/s0361521910060042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011076462
129 https://doi.org/10.3103/s0361521910060042
130 rdf:type schema:CreativeWork
131 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
132 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...