Presure Boundary Conditions in the Collocated Finite-Volume Method for the Steady Navier–Stokes Equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-08

AUTHORS

K. M. Terekhov

ABSTRACT

The pressure boundary conditions for the steady-state solution of the incompressible Navier–Stokes equations with the collocated finite-volume method are discussed. This work is based on inf-sup stable coupled flux approximation. The flux is derived based on the linearity assumption of the velocity and pressure unknowns that yields one-sided flux expressions. Enforcing continuity of these expressions on internal interface we reconstruct the interface velocity and pressure and obtain single continuous flux. As a result, the conservation for the momentum and the divergence is discretely exact. However, on boundary interfaces additional pressure boundary condition is required to reconstruct the interface pressure. More... »

PAGES

1345-1355

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965542522080139

DOI

http://dx.doi.org/10.1134/s0965542522080139

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150918521


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow, Russia", 
            "Moscow Institute of Physics and Technology, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terekhov", 
        "givenName": "K. M.", 
        "id": "sg:person.010235066145.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010235066145.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-030-47232-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1128801558", 
          "https://doi.org/10.1007/978-3-030-47232-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-021-89636-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1138035306", 
          "https://doi.org/10.1038/s41598-021-89636-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-08", 
    "datePublishedReg": "2022-08-01", 
    "description": "The pressure boundary conditions for the steady-state solution of the incompressible Navier\u2013Stokes equations with the collocated finite-volume method are discussed. This work is based on inf-sup stable coupled flux approximation. The flux is derived based on the linearity assumption of the velocity and pressure unknowns that yields one-sided flux expressions. Enforcing continuity of these expressions on internal interface we reconstruct the interface velocity and pressure and obtain single continuous flux. As a result, the conservation for the momentum and the divergence is discretely exact. However, on boundary interfaces additional pressure boundary condition is required to reconstruct the interface pressure.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965542522080139", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136025", 
        "issn": [
          "0965-5425", 
          "1555-6662"
        ], 
        "name": "Computational Mathematics and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "keywords": [
      "collocated finite volume method", 
      "pressure boundary conditions", 
      "finite volume method", 
      "Navier-Stokes equations", 
      "boundary conditions", 
      "incompressible Navier\u2013Stokes equations", 
      "interface velocity", 
      "internal interfaces", 
      "flux expression", 
      "steady Navier\u2013Stokes equations", 
      "flux approximation", 
      "pressure unknowns", 
      "steady-state solutions", 
      "interface pressure", 
      "velocity", 
      "flux", 
      "equations", 
      "conditions", 
      "pressure", 
      "interface", 
      "continuous flux", 
      "method", 
      "linearity assumption", 
      "solution", 
      "inf-sup stable", 
      "unknowns", 
      "work", 
      "momentum", 
      "results", 
      "approximation", 
      "Stable", 
      "assumption", 
      "continuity", 
      "conservation", 
      "divergence", 
      "expression"
    ], 
    "name": "Presure Boundary Conditions in the Collocated Finite-Volume Method for the Steady Navier\u2013Stokes Equations", 
    "pagination": "1345-1355", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150918521"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965542522080139"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965542522080139", 
      "https://app.dimensions.ai/details/publication/pub.1150918521"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_918.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965542522080139"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080139'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080139'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080139'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080139'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      21 PREDICATES      65 URIs      53 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965542522080139 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 anzsrc-for:0105
5 schema:author Nde592e8746ef4db9aa291b63cc5451c9
6 schema:citation sg:pub.10.1007/978-3-030-47232-0
7 sg:pub.10.1038/s41598-021-89636-z
8 schema:datePublished 2022-08
9 schema:datePublishedReg 2022-08-01
10 schema:description The pressure boundary conditions for the steady-state solution of the incompressible Navier–Stokes equations with the collocated finite-volume method are discussed. This work is based on inf-sup stable coupled flux approximation. The flux is derived based on the linearity assumption of the velocity and pressure unknowns that yields one-sided flux expressions. Enforcing continuity of these expressions on internal interface we reconstruct the interface velocity and pressure and obtain single continuous flux. As a result, the conservation for the momentum and the divergence is discretely exact. However, on boundary interfaces additional pressure boundary condition is required to reconstruct the interface pressure.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N279524984d68452386a0cec48dd142c9
14 Ndf4d62bde3b14d76adb8af4eb9de1ae9
15 sg:journal.1136025
16 schema:keywords Navier-Stokes equations
17 Stable
18 approximation
19 assumption
20 boundary conditions
21 collocated finite volume method
22 conditions
23 conservation
24 continuity
25 continuous flux
26 divergence
27 equations
28 expression
29 finite volume method
30 flux
31 flux approximation
32 flux expression
33 incompressible Navier–Stokes equations
34 inf-sup stable
35 interface
36 interface pressure
37 interface velocity
38 internal interfaces
39 linearity assumption
40 method
41 momentum
42 pressure
43 pressure boundary conditions
44 pressure unknowns
45 results
46 solution
47 steady Navier–Stokes equations
48 steady-state solutions
49 unknowns
50 velocity
51 work
52 schema:name Presure Boundary Conditions in the Collocated Finite-Volume Method for the Steady Navier–Stokes Equations
53 schema:pagination 1345-1355
54 schema:productId N09215d54c9e04de392dceb55c11c2edb
55 N3596bced7542481daaeb38deb5033aaa
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150918521
57 https://doi.org/10.1134/s0965542522080139
58 schema:sdDatePublished 2022-12-01T06:44
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N79b7a572c8b64b9897aaeffc60c20880
61 schema:url https://doi.org/10.1134/s0965542522080139
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N09215d54c9e04de392dceb55c11c2edb schema:name dimensions_id
66 schema:value pub.1150918521
67 rdf:type schema:PropertyValue
68 N279524984d68452386a0cec48dd142c9 schema:issueNumber 8
69 rdf:type schema:PublicationIssue
70 N3596bced7542481daaeb38deb5033aaa schema:name doi
71 schema:value 10.1134/s0965542522080139
72 rdf:type schema:PropertyValue
73 N79b7a572c8b64b9897aaeffc60c20880 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Nde592e8746ef4db9aa291b63cc5451c9 rdf:first sg:person.010235066145.71
76 rdf:rest rdf:nil
77 Ndf4d62bde3b14d76adb8af4eb9de1ae9 schema:volumeNumber 62
78 rdf:type schema:PublicationVolume
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
83 schema:name Applied Mathematics
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
86 schema:name Numerical and Computational Mathematics
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
89 schema:name Mathematical Physics
90 rdf:type schema:DefinedTerm
91 sg:journal.1136025 schema:issn 0965-5425
92 1555-6662
93 schema:name Computational Mathematics and Mathematical Physics
94 schema:publisher Pleiades Publishing
95 rdf:type schema:Periodical
96 sg:person.010235066145.71 schema:affiliation grid-institutes:grid.18763.3b
97 schema:familyName Terekhov
98 schema:givenName K. M.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010235066145.71
100 rdf:type schema:Person
101 sg:pub.10.1007/978-3-030-47232-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128801558
102 https://doi.org/10.1007/978-3-030-47232-0
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/s41598-021-89636-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1138035306
105 https://doi.org/10.1038/s41598-021-89636-z
106 rdf:type schema:CreativeWork
107 grid-institutes:grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology, Moscow, Russia
108 schema:name Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow, Russia
109 Moscow Institute of Physics and Technology, Moscow, Russia
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...