Size Gradation Control for Anisotropic Mixed-Element Mesh Adaptation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-08

AUTHORS

Lucille-Marie Tenkes, Frédéric Alauzet

ABSTRACT

Metric-based mesh adaptation can be applied to hybrid mesh generation. Using a metric-orthogonal point-placement, a preliminary quasi-structured mesh is generated. Structured elements are then recovered in the most anisotropic areas. To this extent, it is necessary to ensure the smoothness of the metric field in the first place. This is achieved through a gradation correction process, that is the control of the size growth throughout the mesh. The smallest size prescriptions are spread using a metric intersection algorithm. In this paper, we demonstrate the relevance of size gradation control in our metric-based hybrid mesh generation process. Eventually, our goal is to design a gradation correction process that favors the alignment with the metric field, increases the number and improves the quality of the quadrilaterals. Several gradation control strategies are compared to determine which one is best-suited for hybrid mesh generation. More... »

PAGES

1296-1312

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965542522080127

DOI

http://dx.doi.org/10.1134/s0965542522080127

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150918520


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Inria Saclay, 91190, Palaiseau, France", 
          "id": "http://www.grid.ac/institutes/grid.457355.5", 
          "name": [
            "Inria Saclay, 91190, Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tenkes", 
        "givenName": "Lucille-Marie", 
        "id": "sg:person.015244222036.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015244222036.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Inria Saclay, 91190, Palaiseau, France", 
          "id": "http://www.grid.ac/institutes/grid.457355.5", 
          "name": [
            "Inria Saclay, 91190, Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alauzet", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "id": "sg:person.014743774437.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014743774437.93"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2022-08", 
    "datePublishedReg": "2022-08-01", 
    "description": "Metric-based mesh adaptation can be applied to hybrid mesh generation. Using a metric-orthogonal point-placement, a preliminary quasi-structured mesh is generated. Structured elements are then recovered in the most anisotropic areas. To this extent, it is necessary to ensure the smoothness of the metric field in the first place. This is achieved through a gradation correction process, that is the control of the size growth throughout the mesh. The smallest size prescriptions are spread using a metric intersection algorithm. In this paper, we demonstrate the relevance of size gradation control in our metric-based hybrid mesh generation process. Eventually, our goal is to design a gradation correction process that favors the alignment with the metric field, increases the number and improves the quality of the quadrilaterals. Several gradation control strategies are compared to determine which one is best-suited for hybrid mesh generation.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965542522080127", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136025", 
        "issn": [
          "0965-5425", 
          "1555-6662"
        ], 
        "name": "Computational Mathematics and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "keywords": [
      "hybrid mesh generation", 
      "gradation control", 
      "mesh generation", 
      "mesh adaptation", 
      "mesh generation process", 
      "correction process", 
      "control strategy", 
      "mesh", 
      "anisotropic areas", 
      "size growth", 
      "generation process", 
      "generation", 
      "field", 
      "process", 
      "metric field", 
      "intersection algorithm", 
      "control", 
      "smoothness", 
      "quadrilateral", 
      "structured elements", 
      "elements", 
      "algorithm", 
      "alignment", 
      "area", 
      "quality", 
      "one", 
      "metrics", 
      "growth", 
      "number", 
      "strategies", 
      "first place", 
      "place", 
      "goal", 
      "extent", 
      "adaptation", 
      "relevance", 
      "prescription", 
      "paper"
    ], 
    "name": "Size Gradation Control for Anisotropic Mixed-Element Mesh Adaptation", 
    "pagination": "1296-1312", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150918520"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965542522080127"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965542522080127", 
      "https://app.dimensions.ai/details/publication/pub.1150918520"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_944.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965542522080127"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080127'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080127'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080127'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080127'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      20 PREDICATES      65 URIs      55 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965542522080127 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 anzsrc-for:0105
5 schema:author N1a8106e2172a495ab8af4518be0faa69
6 schema:datePublished 2022-08
7 schema:datePublishedReg 2022-08-01
8 schema:description Metric-based mesh adaptation can be applied to hybrid mesh generation. Using a metric-orthogonal point-placement, a preliminary quasi-structured mesh is generated. Structured elements are then recovered in the most anisotropic areas. To this extent, it is necessary to ensure the smoothness of the metric field in the first place. This is achieved through a gradation correction process, that is the control of the size growth throughout the mesh. The smallest size prescriptions are spread using a metric intersection algorithm. In this paper, we demonstrate the relevance of size gradation control in our metric-based hybrid mesh generation process. Eventually, our goal is to design a gradation correction process that favors the alignment with the metric field, increases the number and improves the quality of the quadrilaterals. Several gradation control strategies are compared to determine which one is best-suited for hybrid mesh generation.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N42948c551e6b4cafa9adaa0b3505c9c3
12 Nd9a2d9db84374db79022879fac960e88
13 sg:journal.1136025
14 schema:keywords adaptation
15 algorithm
16 alignment
17 anisotropic areas
18 area
19 control
20 control strategy
21 correction process
22 elements
23 extent
24 field
25 first place
26 generation
27 generation process
28 goal
29 gradation control
30 growth
31 hybrid mesh generation
32 intersection algorithm
33 mesh
34 mesh adaptation
35 mesh generation
36 mesh generation process
37 metric field
38 metrics
39 number
40 one
41 paper
42 place
43 prescription
44 process
45 quadrilateral
46 quality
47 relevance
48 size growth
49 smoothness
50 strategies
51 structured elements
52 schema:name Size Gradation Control for Anisotropic Mixed-Element Mesh Adaptation
53 schema:pagination 1296-1312
54 schema:productId N4af7794c888c4132826e5a642027aea6
55 N4ff20bdf9a6848649138395c5843f347
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150918520
57 https://doi.org/10.1134/s0965542522080127
58 schema:sdDatePublished 2022-12-01T06:44
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N7d9c7b8ddf924ba78842ae9868884746
61 schema:url https://doi.org/10.1134/s0965542522080127
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N04868dda0b5648cb81210a64cebdf725 rdf:first sg:person.014743774437.93
66 rdf:rest rdf:nil
67 N1a8106e2172a495ab8af4518be0faa69 rdf:first sg:person.015244222036.81
68 rdf:rest N04868dda0b5648cb81210a64cebdf725
69 N42948c551e6b4cafa9adaa0b3505c9c3 schema:volumeNumber 62
70 rdf:type schema:PublicationVolume
71 N4af7794c888c4132826e5a642027aea6 schema:name doi
72 schema:value 10.1134/s0965542522080127
73 rdf:type schema:PropertyValue
74 N4ff20bdf9a6848649138395c5843f347 schema:name dimensions_id
75 schema:value pub.1150918520
76 rdf:type schema:PropertyValue
77 N7d9c7b8ddf924ba78842ae9868884746 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nd9a2d9db84374db79022879fac960e88 schema:issueNumber 8
80 rdf:type schema:PublicationIssue
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
85 schema:name Applied Mathematics
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
88 schema:name Numerical and Computational Mathematics
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
91 schema:name Mathematical Physics
92 rdf:type schema:DefinedTerm
93 sg:journal.1136025 schema:issn 0965-5425
94 1555-6662
95 schema:name Computational Mathematics and Mathematical Physics
96 schema:publisher Pleiades Publishing
97 rdf:type schema:Periodical
98 sg:person.014743774437.93 schema:affiliation grid-institutes:grid.457355.5
99 schema:familyName Alauzet
100 schema:givenName Frédéric
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014743774437.93
102 rdf:type schema:Person
103 sg:person.015244222036.81 schema:affiliation grid-institutes:grid.457355.5
104 schema:familyName Tenkes
105 schema:givenName Lucille-Marie
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015244222036.81
107 rdf:type schema:Person
108 grid-institutes:grid.457355.5 schema:alternateName Inria Saclay, 91190, Palaiseau, France
109 schema:name Inria Saclay, 91190, Palaiseau, France
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...