The Singularity Set of Optimal Transportation Maps View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-08

AUTHORS

Zhongxuan Luo, Wei Chen, Na Lei, Yang Guo, Tong Zhao, Jiakun Liu, Xianfeng Gu

ABSTRACT

Optimal transportation plays an important role in many engineering fields, especially in deep learning. By the Brenier theorem, computing optimal transportation maps is reduced to solving Monge–Ampère equations, which in turn is equivalent to constructing Alexandrov polytopes. Furthermore, the regularity theory of Monge–Ampère equation explains mode collapsing issue in deep learning. Hence, computing and studying the singularity sets of OT maps become important. In this work, we generalize the concept of medial axis to power medial axis, which describes the singularity sets of optimal transportation maps. Then we propose a computational algorithm based on variational approach using power diagrams. Furthermore, we prove that when the measures are changed homotopically, the corresponding singularity sets of the optimal transportation maps are homotopy equivalent as well. Furthermore, we generalize the Fréchet distance concept and utilize the obliqueness condition to give a sufficient condition for the existence of singularities of optimal transportation maps between planar domains. The condition is formulated using the boundary curvature. More... »

PAGES

1313-1330

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965542522080097

DOI

http://dx.doi.org/10.1134/s0965542522080097

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150918517


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, 116620, Dalian, China", 
          "id": "http://www.grid.ac/institutes/grid.30055.33", 
          "name": [
            "Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, 116620, Dalian, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Zhongxuan", 
        "id": "sg:person.0727616306.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727616306.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software Technology, Dalian University of Technology, 116620, Dalian, China", 
          "id": "http://www.grid.ac/institutes/grid.30055.33", 
          "name": [
            "School of Software Technology, Dalian University of Technology, 116620, Dalian, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Wei", 
        "id": "sg:person.012144356413.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012144356413.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DUT-RU ISE, Dalian University of Technology, 116620, Dalian, China", 
          "id": "http://www.grid.ac/institutes/grid.30055.33", 
          "name": [
            "DUT-RU ISE, Dalian University of Technology, 116620, Dalian, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lei", 
        "givenName": "Na", 
        "id": "sg:person.010206466324.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010206466324.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Stony Brook University, 11794, Stony Brook, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Department of Computer Science, Stony Brook University, 11794, Stony Brook, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Yang", 
        "id": "sg:person.016624714004.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016624714004.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INRIA Sophia-Antipolis & Telecom Paris, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.89485.38", 
          "name": [
            "INRIA Sophia-Antipolis & Telecom Paris, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Tong", 
        "id": "sg:person.010427265025.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010427265025.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Applied Statistics, University of Wollongong, 2522, Wollongong, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1007.6", 
          "name": [
            "School of Mathematics and Applied Statistics, University of Wollongong, 2522, Wollongong, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jiakun", 
        "id": "sg:person.011207134316.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011207134316.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Stony Brook University, 11794, Stony Brook, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Department of Computer Science, Stony Brook University, 11794, Stony Brook, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu", 
        "givenName": "Xianfeng", 
        "id": "sg:person.0624630621.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624630621.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-12971-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018738741", 
          "https://doi.org/10.1007/978-3-642-12971-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542519120121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124957973", 
          "https://doi.org/10.1134/s0965542519120121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4771-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016648113", 
          "https://doi.org/10.1007/978-0-8176-4771-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-08", 
    "datePublishedReg": "2022-08-01", 
    "description": "Optimal transportation plays an important role in many engineering fields, especially in deep learning. By the Brenier theorem, computing optimal transportation maps is reduced to solving Monge\u2013Amp\u00e8re equations, which in turn is equivalent to constructing Alexandrov polytopes. Furthermore, the regularity theory of Monge\u2013Amp\u00e8re equation explains mode collapsing issue in deep learning. Hence, computing and studying the singularity sets of OT maps become important. In this work, we generalize the concept of medial axis to power medial axis, which describes the singularity sets of optimal transportation maps. Then we propose a computational algorithm based on variational approach using power diagrams. Furthermore, we prove that when the measures are changed homotopically, the corresponding singularity sets of the optimal transportation maps are homotopy equivalent as well. Furthermore, we generalize the Fr\u00e9chet distance concept and utilize the obliqueness condition to give a sufficient condition for the existence of singularities of optimal transportation maps between planar domains. The condition is formulated using the boundary curvature.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965542522080097", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7703179", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8310799", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8676445", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9416508", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8309566", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6712070", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6376609", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9846864", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136025", 
        "issn": [
          "0965-5425", 
          "1555-6662"
        ], 
        "name": "Computational Mathematics and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "keywords": [
      "optimal transportation maps", 
      "Monge\u2013Amp\u00e8re equation", 
      "singularity sets", 
      "transportation maps", 
      "existence of singularities", 
      "Brenier's theorem", 
      "regularity theory", 
      "medial axis", 
      "optimal transportation", 
      "variational approach", 
      "sufficient conditions", 
      "computational algorithm", 
      "power diagram", 
      "equations", 
      "planar domains", 
      "distance concept", 
      "boundary curvature", 
      "deep learning", 
      "engineering fields", 
      "theorem", 
      "set", 
      "singularity", 
      "polytope", 
      "theory", 
      "algorithm", 
      "curvature", 
      "maps", 
      "existence", 
      "diagram", 
      "axis", 
      "field", 
      "conditions", 
      "learning", 
      "concept", 
      "approach", 
      "mode", 
      "domain", 
      "work", 
      "transportation", 
      "important role", 
      "issues", 
      "measures", 
      "turn", 
      "role"
    ], 
    "name": "The Singularity Set of Optimal Transportation Maps", 
    "pagination": "1313-1330", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150918517"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965542522080097"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965542522080097", 
      "https://app.dimensions.ai/details/publication/pub.1150918517"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_933.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965542522080097"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080097'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080097'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080097'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080097'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      72 URIs      61 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965542522080097 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nbb1bf8db65a24284a79eade3eaba5c8c
4 schema:citation sg:pub.10.1007/978-0-8176-4771-1
5 sg:pub.10.1007/978-3-642-12971-1
6 sg:pub.10.1134/s0965542519120121
7 schema:datePublished 2022-08
8 schema:datePublishedReg 2022-08-01
9 schema:description Optimal transportation plays an important role in many engineering fields, especially in deep learning. By the Brenier theorem, computing optimal transportation maps is reduced to solving Monge–Ampère equations, which in turn is equivalent to constructing Alexandrov polytopes. Furthermore, the regularity theory of Monge–Ampère equation explains mode collapsing issue in deep learning. Hence, computing and studying the singularity sets of OT maps become important. In this work, we generalize the concept of medial axis to power medial axis, which describes the singularity sets of optimal transportation maps. Then we propose a computational algorithm based on variational approach using power diagrams. Furthermore, we prove that when the measures are changed homotopically, the corresponding singularity sets of the optimal transportation maps are homotopy equivalent as well. Furthermore, we generalize the Fréchet distance concept and utilize the obliqueness condition to give a sufficient condition for the existence of singularities of optimal transportation maps between planar domains. The condition is formulated using the boundary curvature.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N222a883689754cb2ac980e1a8fa03b0d
13 N6b3b3b475e874e819b427d4059721087
14 sg:journal.1136025
15 schema:keywords Brenier's theorem
16 Monge–Ampère equation
17 algorithm
18 approach
19 axis
20 boundary curvature
21 computational algorithm
22 concept
23 conditions
24 curvature
25 deep learning
26 diagram
27 distance concept
28 domain
29 engineering fields
30 equations
31 existence
32 existence of singularities
33 field
34 important role
35 issues
36 learning
37 maps
38 measures
39 medial axis
40 mode
41 optimal transportation
42 optimal transportation maps
43 planar domains
44 polytope
45 power diagram
46 regularity theory
47 role
48 set
49 singularity
50 singularity sets
51 sufficient conditions
52 theorem
53 theory
54 transportation
55 transportation maps
56 turn
57 variational approach
58 work
59 schema:name The Singularity Set of Optimal Transportation Maps
60 schema:pagination 1313-1330
61 schema:productId N2c15c0d165fe4177bbb0b9c6cfcf075f
62 N39d4ab31e2c2408e9cfef106c5a06d4e
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150918517
64 https://doi.org/10.1134/s0965542522080097
65 schema:sdDatePublished 2022-12-01T06:44
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N38274ab58aa542058c8ebcb666e85f1c
68 schema:url https://doi.org/10.1134/s0965542522080097
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N0f4b8d71d5e54536a88b93979fec6319 rdf:first sg:person.011207134316.29
73 rdf:rest N565e53df7aef4e798dcb5bb8879c838c
74 N222a883689754cb2ac980e1a8fa03b0d schema:volumeNumber 62
75 rdf:type schema:PublicationVolume
76 N2474d5df29244471adcc1cc6f562bf2b rdf:first sg:person.010206466324.62
77 rdf:rest N7e369c15effa4639a1517a4e6a24efc7
78 N2c15c0d165fe4177bbb0b9c6cfcf075f schema:name dimensions_id
79 schema:value pub.1150918517
80 rdf:type schema:PropertyValue
81 N38274ab58aa542058c8ebcb666e85f1c schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N39d4ab31e2c2408e9cfef106c5a06d4e schema:name doi
84 schema:value 10.1134/s0965542522080097
85 rdf:type schema:PropertyValue
86 N565e53df7aef4e798dcb5bb8879c838c rdf:first sg:person.0624630621.78
87 rdf:rest rdf:nil
88 N6b3b3b475e874e819b427d4059721087 schema:issueNumber 8
89 rdf:type schema:PublicationIssue
90 N7e369c15effa4639a1517a4e6a24efc7 rdf:first sg:person.016624714004.40
91 rdf:rest Nf5d2db51ba5f4015b609123ec2f227ce
92 N84359a7434304626a1c2794b8f49ac51 rdf:first sg:person.012144356413.80
93 rdf:rest N2474d5df29244471adcc1cc6f562bf2b
94 Nbb1bf8db65a24284a79eade3eaba5c8c rdf:first sg:person.0727616306.17
95 rdf:rest N84359a7434304626a1c2794b8f49ac51
96 Nf5d2db51ba5f4015b609123ec2f227ce rdf:first sg:person.010427265025.77
97 rdf:rest N0f4b8d71d5e54536a88b93979fec6319
98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
99 schema:name Mathematical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
102 schema:name Applied Mathematics
103 rdf:type schema:DefinedTerm
104 sg:grant.6376609 http://pending.schema.org/fundedItem sg:pub.10.1134/s0965542522080097
105 rdf:type schema:MonetaryGrant
106 sg:grant.6712070 http://pending.schema.org/fundedItem sg:pub.10.1134/s0965542522080097
107 rdf:type schema:MonetaryGrant
108 sg:grant.7703179 http://pending.schema.org/fundedItem sg:pub.10.1134/s0965542522080097
109 rdf:type schema:MonetaryGrant
110 sg:grant.8309566 http://pending.schema.org/fundedItem sg:pub.10.1134/s0965542522080097
111 rdf:type schema:MonetaryGrant
112 sg:grant.8310799 http://pending.schema.org/fundedItem sg:pub.10.1134/s0965542522080097
113 rdf:type schema:MonetaryGrant
114 sg:grant.8676445 http://pending.schema.org/fundedItem sg:pub.10.1134/s0965542522080097
115 rdf:type schema:MonetaryGrant
116 sg:grant.9416508 http://pending.schema.org/fundedItem sg:pub.10.1134/s0965542522080097
117 rdf:type schema:MonetaryGrant
118 sg:grant.9846864 http://pending.schema.org/fundedItem sg:pub.10.1134/s0965542522080097
119 rdf:type schema:MonetaryGrant
120 sg:journal.1136025 schema:issn 0965-5425
121 1555-6662
122 schema:name Computational Mathematics and Mathematical Physics
123 schema:publisher Pleiades Publishing
124 rdf:type schema:Periodical
125 sg:person.010206466324.62 schema:affiliation grid-institutes:grid.30055.33
126 schema:familyName Lei
127 schema:givenName Na
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010206466324.62
129 rdf:type schema:Person
130 sg:person.010427265025.77 schema:affiliation grid-institutes:grid.89485.38
131 schema:familyName Zhao
132 schema:givenName Tong
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010427265025.77
134 rdf:type schema:Person
135 sg:person.011207134316.29 schema:affiliation grid-institutes:grid.1007.6
136 schema:familyName Liu
137 schema:givenName Jiakun
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011207134316.29
139 rdf:type schema:Person
140 sg:person.012144356413.80 schema:affiliation grid-institutes:grid.30055.33
141 schema:familyName Chen
142 schema:givenName Wei
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012144356413.80
144 rdf:type schema:Person
145 sg:person.016624714004.40 schema:affiliation grid-institutes:grid.36425.36
146 schema:familyName Guo
147 schema:givenName Yang
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016624714004.40
149 rdf:type schema:Person
150 sg:person.0624630621.78 schema:affiliation grid-institutes:grid.36425.36
151 schema:familyName Gu
152 schema:givenName Xianfeng
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624630621.78
154 rdf:type schema:Person
155 sg:person.0727616306.17 schema:affiliation grid-institutes:grid.30055.33
156 schema:familyName Luo
157 schema:givenName Zhongxuan
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727616306.17
159 rdf:type schema:Person
160 sg:pub.10.1007/978-0-8176-4771-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016648113
161 https://doi.org/10.1007/978-0-8176-4771-1
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/978-3-642-12971-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018738741
164 https://doi.org/10.1007/978-3-642-12971-1
165 rdf:type schema:CreativeWork
166 sg:pub.10.1134/s0965542519120121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124957973
167 https://doi.org/10.1134/s0965542519120121
168 rdf:type schema:CreativeWork
169 grid-institutes:grid.1007.6 schema:alternateName School of Mathematics and Applied Statistics, University of Wollongong, 2522, Wollongong, NSW, Australia
170 schema:name School of Mathematics and Applied Statistics, University of Wollongong, 2522, Wollongong, NSW, Australia
171 rdf:type schema:Organization
172 grid-institutes:grid.30055.33 schema:alternateName DUT-RU ISE, Dalian University of Technology, 116620, Dalian, China
173 Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, 116620, Dalian, China
174 School of Software Technology, Dalian University of Technology, 116620, Dalian, China
175 schema:name DUT-RU ISE, Dalian University of Technology, 116620, Dalian, China
176 Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, 116620, Dalian, China
177 School of Software Technology, Dalian University of Technology, 116620, Dalian, China
178 rdf:type schema:Organization
179 grid-institutes:grid.36425.36 schema:alternateName Department of Computer Science, Stony Brook University, 11794, Stony Brook, NY, USA
180 schema:name Department of Computer Science, Stony Brook University, 11794, Stony Brook, NY, USA
181 rdf:type schema:Organization
182 grid-institutes:grid.89485.38 schema:alternateName INRIA Sophia-Antipolis & Telecom Paris, Paris, France
183 schema:name INRIA Sophia-Antipolis & Telecom Paris, Paris, France
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...