Shock-Capturing Exponential Multigrid Methods for Steady Compressible Flows View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-08

AUTHORS

Shu-Jie Li

ABSTRACT

In this paper, a robust and efficient exponential multigrid framework is proposed for computing steady compressible flows. The algorithm based on a global coupling, exponential time integration scheme can provide strong damping effects to accelerate the convergence towards the steady state, while high-frequency, high-order spatial error modes are smoothed out with a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}-stage preconditioned Runge–Kutta method. The resultant exponential multigrid framework is shown to be effective for smooth flows and can stabilize shock-capturing computations without limiting or adding artificial dissipation for medium-strength shock waves. More... »

PAGES

1397-1412

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965542522080085

DOI

http://dx.doi.org/10.1134/s0965542522080085

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150918516


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beijing Computational Science Research Center, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410743.5", 
          "name": [
            "Beijing Computational Science Research Center, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Shu-Jie", 
        "id": "sg:person.012403665323.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012403665323.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-03915-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009052860", 
          "https://doi.org/10.1007/978-3-662-03915-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542519120133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124953399", 
          "https://doi.org/10.1134/s0965542519120133"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-08", 
    "datePublishedReg": "2022-08-01", 
    "description": "In this paper, a robust and efficient exponential multigrid framework is proposed for computing steady compressible flows. The algorithm based on a global coupling, exponential time integration scheme can provide strong damping effects to accelerate the convergence towards the steady state, while high-frequency, high-order spatial error modes are smoothed out with a \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$s$$\\end{document}-stage preconditioned Runge\u2013Kutta method. The resultant exponential multigrid framework is shown to be effective for smooth flows and can stabilize shock-capturing computations without limiting or adding artificial dissipation for medium-strength shock waves.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965542522080085", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.9416860", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136025", 
        "issn": [
          "0965-5425", 
          "1555-6662"
        ], 
        "name": "Computational Mathematics and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "keywords": [
      "time integration scheme", 
      "multigrid framework", 
      "shock-capturing computations", 
      "steady compressible flows", 
      "compressible flow", 
      "integration scheme", 
      "strong damping effect", 
      "damping effect", 
      "Runge-Kutta method", 
      "artificial dissipation", 
      "smooth flow", 
      "shock waves", 
      "flow", 
      "error modes", 
      "multigrid method", 
      "steady compressible", 
      "steady state", 
      "compressible", 
      "dissipation", 
      "exponential time integration scheme", 
      "method", 
      "waves", 
      "scheme", 
      "mode", 
      "algorithm", 
      "global coupling", 
      "coupling", 
      "computation", 
      "framework", 
      "effect", 
      "convergence", 
      "stage", 
      "state", 
      "paper"
    ], 
    "name": "Shock-Capturing Exponential Multigrid Methods for Steady Compressible Flows", 
    "pagination": "1397-1412", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150918516"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965542522080085"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965542522080085", 
      "https://app.dimensions.ai/details/publication/pub.1150918516"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_948.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965542522080085"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080085'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080085'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080085'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080085'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      63 URIs      51 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965542522080085 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 anzsrc-for:0105
5 schema:author Nc0017dd49be04b42ab53b971c8f5a92c
6 schema:citation sg:pub.10.1007/978-3-662-03915-1
7 sg:pub.10.1134/s0965542519120133
8 schema:datePublished 2022-08
9 schema:datePublishedReg 2022-08-01
10 schema:description In this paper, a robust and efficient exponential multigrid framework is proposed for computing steady compressible flows. The algorithm based on a global coupling, exponential time integration scheme can provide strong damping effects to accelerate the convergence towards the steady state, while high-frequency, high-order spatial error modes are smoothed out with a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}-stage preconditioned Runge–Kutta method. The resultant exponential multigrid framework is shown to be effective for smooth flows and can stabilize shock-capturing computations without limiting or adding artificial dissipation for medium-strength shock waves.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N7b010536cd4e48cfa3883685a349ee43
14 Nf05c0775730845c4b3f3a6f8855b4d8c
15 sg:journal.1136025
16 schema:keywords Runge-Kutta method
17 algorithm
18 artificial dissipation
19 compressible
20 compressible flow
21 computation
22 convergence
23 coupling
24 damping effect
25 dissipation
26 effect
27 error modes
28 exponential time integration scheme
29 flow
30 framework
31 global coupling
32 integration scheme
33 method
34 mode
35 multigrid framework
36 multigrid method
37 paper
38 scheme
39 shock waves
40 shock-capturing computations
41 smooth flow
42 stage
43 state
44 steady compressible
45 steady compressible flows
46 steady state
47 strong damping effect
48 time integration scheme
49 waves
50 schema:name Shock-Capturing Exponential Multigrid Methods for Steady Compressible Flows
51 schema:pagination 1397-1412
52 schema:productId N40debb5d112c4ad3b03fce4adc243c6d
53 N7813e69f46d44494ad0274d3628077c5
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150918516
55 https://doi.org/10.1134/s0965542522080085
56 schema:sdDatePublished 2022-12-01T06:44
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Ne9ca2b3545ca4b699ba159c014099d6a
59 schema:url https://doi.org/10.1134/s0965542522080085
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N40debb5d112c4ad3b03fce4adc243c6d schema:name dimensions_id
64 schema:value pub.1150918516
65 rdf:type schema:PropertyValue
66 N7813e69f46d44494ad0274d3628077c5 schema:name doi
67 schema:value 10.1134/s0965542522080085
68 rdf:type schema:PropertyValue
69 N7b010536cd4e48cfa3883685a349ee43 schema:issueNumber 8
70 rdf:type schema:PublicationIssue
71 Nc0017dd49be04b42ab53b971c8f5a92c rdf:first sg:person.012403665323.17
72 rdf:rest rdf:nil
73 Ne9ca2b3545ca4b699ba159c014099d6a schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Nf05c0775730845c4b3f3a6f8855b4d8c schema:volumeNumber 62
76 rdf:type schema:PublicationVolume
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
81 schema:name Applied Mathematics
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
84 schema:name Numerical and Computational Mathematics
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Physics
88 rdf:type schema:DefinedTerm
89 sg:grant.9416860 http://pending.schema.org/fundedItem sg:pub.10.1134/s0965542522080085
90 rdf:type schema:MonetaryGrant
91 sg:journal.1136025 schema:issn 0965-5425
92 1555-6662
93 schema:name Computational Mathematics and Mathematical Physics
94 schema:publisher Pleiades Publishing
95 rdf:type schema:Periodical
96 sg:person.012403665323.17 schema:affiliation grid-institutes:grid.410743.5
97 schema:familyName Li
98 schema:givenName Shu-Jie
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012403665323.17
100 rdf:type schema:Person
101 sg:pub.10.1007/978-3-662-03915-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009052860
102 https://doi.org/10.1007/978-3-662-03915-1
103 rdf:type schema:CreativeWork
104 sg:pub.10.1134/s0965542519120133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124953399
105 https://doi.org/10.1134/s0965542519120133
106 rdf:type schema:CreativeWork
107 grid-institutes:grid.410743.5 schema:alternateName Beijing Computational Science Research Center, Beijing, China
108 schema:name Beijing Computational Science Research Center, Beijing, China
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...