An Analysis of Grid-Clustering Rules in a Boundary Layer Using the Numerical Solution of the Problem of Viscous Flow over ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-08

AUTHORS

A. N. Kudryavtsev, V. D. Liseikin, A. V. Mukhortov

ABSTRACT

The problem of the supersonic flow of a viscous compressible gas over a flat plate at a zero angle of attack was numerically studied. The two-dimensional Navier–Stokes equations were solved at various Reynolds numbers on adaptive grids with boundary-layer mesh refinement. Well-known grids constructed with the help of coordinate transformations eliminating boundary layers of various types were considered. The characteristics of numerical solutions (the value and order of the error, the value and order of the solution jump, and computation time) were analyzed in a series of numerical experiments. The advantages, shortcomings, and the applicability of each boundary layer mesh refinement rule for finding the numerical solution of this problem were discussed. The novelty of this work lies in the analysis of special adaptive grids and their use for solving problems applied in various fields of supersonic aero- and gas dynamics. More... »

PAGES

1356-1371

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965542522080073

DOI

http://dx.doi.org/10.1134/s0965542522080073

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150918515


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudryavtsev", 
        "givenName": "A. N.", 
        "id": "sg:person.015063131315.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015063131315.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal Research Center for Information and Computational Technologies, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465318.d", 
          "name": [
            "Novosibirsk State University, 630090, Novosibirsk, Russia", 
            "Federal Research Center for Information and Computational Technologies, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liseikin", 
        "givenName": "V. D.", 
        "id": "sg:person.016626267763.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016626267763.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Novosibirsk State University, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mukhortov", 
        "givenName": "A. V.", 
        "id": "sg:person.011074140074.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011074140074.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s199542391901004x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113269026", 
          "https://doi.org/10.1134/s199542391901004x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s096554251611004x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031030845", 
          "https://doi.org/10.1134/s096554251611004x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-57846-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085985709", 
          "https://doi.org/10.1007/978-3-319-57846-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-08", 
    "datePublishedReg": "2022-08-01", 
    "description": "The problem of the supersonic flow of a viscous compressible gas over a flat plate at a zero angle of attack was numerically studied. The two-dimensional Navier\u2013Stokes equations were solved at various Reynolds numbers on adaptive grids with boundary-layer mesh refinement. Well-known grids constructed with the help of coordinate transformations eliminating boundary layers of various types were considered. The characteristics of numerical solutions (the value and order of the error, the value and order of the solution jump, and computation time) were analyzed in a series of numerical experiments. The advantages, shortcomings, and the applicability of each boundary layer mesh refinement rule for finding the numerical solution of this problem were discussed. The novelty of this work lies in the analysis of special adaptive grids and their use for solving problems applied in various fields of supersonic aero- and gas dynamics.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965542522080073", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136025", 
        "issn": [
          "0965-5425", 
          "1555-6662"
        ], 
        "name": "Computational Mathematics and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "keywords": [
      "numerical solution", 
      "adaptive grid", 
      "boundary layer", 
      "two-dimensional Navier", 
      "viscous compressible gas", 
      "angle of attack", 
      "Stokes equations", 
      "gas dynamics", 
      "numerical experiments", 
      "coordinate transformation", 
      "Reynolds number", 
      "compressible gas", 
      "flat plate", 
      "viscous flow", 
      "mesh refinement", 
      "supersonic flow", 
      "grid", 
      "problem", 
      "solution", 
      "layer", 
      "Navier", 
      "plate", 
      "equations", 
      "flow", 
      "aero", 
      "gas", 
      "dynamics", 
      "field", 
      "refinement rules", 
      "rules", 
      "angle", 
      "applicability", 
      "advantages", 
      "novelty", 
      "characteristics", 
      "refinement", 
      "experiments", 
      "work", 
      "transformation", 
      "number", 
      "analysis", 
      "help", 
      "shortcomings", 
      "use", 
      "types", 
      "series", 
      "attacks"
    ], 
    "name": "An Analysis of Grid-Clustering Rules in a Boundary Layer Using the Numerical Solution of the Problem of Viscous Flow over a Plate", 
    "pagination": "1356-1371", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150918515"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965542522080073"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965542522080073", 
      "https://app.dimensions.ai/details/publication/pub.1150918515"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_939.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965542522080073"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080073'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080073'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080073'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080073'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      77 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965542522080073 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 anzsrc-for:0105
5 schema:author N96408b4d058d4f3d929b7032e9e27e29
6 schema:citation sg:pub.10.1007/978-3-319-57846-0
7 sg:pub.10.1134/s096554251611004x
8 sg:pub.10.1134/s199542391901004x
9 schema:datePublished 2022-08
10 schema:datePublishedReg 2022-08-01
11 schema:description The problem of the supersonic flow of a viscous compressible gas over a flat plate at a zero angle of attack was numerically studied. The two-dimensional Navier–Stokes equations were solved at various Reynolds numbers on adaptive grids with boundary-layer mesh refinement. Well-known grids constructed with the help of coordinate transformations eliminating boundary layers of various types were considered. The characteristics of numerical solutions (the value and order of the error, the value and order of the solution jump, and computation time) were analyzed in a series of numerical experiments. The advantages, shortcomings, and the applicability of each boundary layer mesh refinement rule for finding the numerical solution of this problem were discussed. The novelty of this work lies in the analysis of special adaptive grids and their use for solving problems applied in various fields of supersonic aero- and gas dynamics.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N1ab8c88d07dd4dc9a2a92561a451ddfd
15 N1f988e81dc8f4e4e989e27d3fe49169a
16 sg:journal.1136025
17 schema:keywords Navier
18 Reynolds number
19 Stokes equations
20 adaptive grid
21 advantages
22 aero
23 analysis
24 angle
25 angle of attack
26 applicability
27 attacks
28 boundary layer
29 characteristics
30 compressible gas
31 coordinate transformation
32 dynamics
33 equations
34 experiments
35 field
36 flat plate
37 flow
38 gas
39 gas dynamics
40 grid
41 help
42 layer
43 mesh refinement
44 novelty
45 number
46 numerical experiments
47 numerical solution
48 plate
49 problem
50 refinement
51 refinement rules
52 rules
53 series
54 shortcomings
55 solution
56 supersonic flow
57 transformation
58 two-dimensional Navier
59 types
60 use
61 viscous compressible gas
62 viscous flow
63 work
64 schema:name An Analysis of Grid-Clustering Rules in a Boundary Layer Using the Numerical Solution of the Problem of Viscous Flow over a Plate
65 schema:pagination 1356-1371
66 schema:productId N5a369d8e0bb5455aba1d8e442810fa73
67 Nd9e1ab8da14c4a65a313f9cd4a245001
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150918515
69 https://doi.org/10.1134/s0965542522080073
70 schema:sdDatePublished 2022-12-01T06:44
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Na777c653044d411c8244b3bc445f8884
73 schema:url https://doi.org/10.1134/s0965542522080073
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N011cdcf10ff44556b45dc8595adb4616 rdf:first sg:person.011074140074.90
78 rdf:rest rdf:nil
79 N1ab8c88d07dd4dc9a2a92561a451ddfd schema:volumeNumber 62
80 rdf:type schema:PublicationVolume
81 N1f988e81dc8f4e4e989e27d3fe49169a schema:issueNumber 8
82 rdf:type schema:PublicationIssue
83 N4b1dab154cd94d5eafecba17a989d6b9 rdf:first sg:person.016626267763.80
84 rdf:rest N011cdcf10ff44556b45dc8595adb4616
85 N5a369d8e0bb5455aba1d8e442810fa73 schema:name doi
86 schema:value 10.1134/s0965542522080073
87 rdf:type schema:PropertyValue
88 N96408b4d058d4f3d929b7032e9e27e29 rdf:first sg:person.015063131315.33
89 rdf:rest N4b1dab154cd94d5eafecba17a989d6b9
90 Na777c653044d411c8244b3bc445f8884 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Nd9e1ab8da14c4a65a313f9cd4a245001 schema:name dimensions_id
93 schema:value pub.1150918515
94 rdf:type schema:PropertyValue
95 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
96 schema:name Mathematical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
99 schema:name Applied Mathematics
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
102 schema:name Numerical and Computational Mathematics
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
105 schema:name Mathematical Physics
106 rdf:type schema:DefinedTerm
107 sg:journal.1136025 schema:issn 0965-5425
108 1555-6662
109 schema:name Computational Mathematics and Mathematical Physics
110 schema:publisher Pleiades Publishing
111 rdf:type schema:Periodical
112 sg:person.011074140074.90 schema:affiliation grid-institutes:grid.4605.7
113 schema:familyName Mukhortov
114 schema:givenName A. V.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011074140074.90
116 rdf:type schema:Person
117 sg:person.015063131315.33 schema:affiliation grid-institutes:grid.4605.7
118 schema:familyName Kudryavtsev
119 schema:givenName A. N.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015063131315.33
121 rdf:type schema:Person
122 sg:person.016626267763.80 schema:affiliation grid-institutes:grid.465318.d
123 schema:familyName Liseikin
124 schema:givenName V. D.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016626267763.80
126 rdf:type schema:Person
127 sg:pub.10.1007/978-3-319-57846-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085985709
128 https://doi.org/10.1007/978-3-319-57846-0
129 rdf:type schema:CreativeWork
130 sg:pub.10.1134/s096554251611004x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031030845
131 https://doi.org/10.1134/s096554251611004x
132 rdf:type schema:CreativeWork
133 sg:pub.10.1134/s199542391901004x schema:sameAs https://app.dimensions.ai/details/publication/pub.1113269026
134 https://doi.org/10.1134/s199542391901004x
135 rdf:type schema:CreativeWork
136 grid-institutes:grid.4605.7 schema:alternateName Novosibirsk State University, 630090, Novosibirsk, Russia
137 schema:name Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
138 Novosibirsk State University, 630090, Novosibirsk, Russia
139 rdf:type schema:Organization
140 grid-institutes:grid.465318.d schema:alternateName Federal Research Center for Information and Computational Technologies, 630090, Novosibirsk, Russia
141 schema:name Federal Research Center for Information and Computational Technologies, 630090, Novosibirsk, Russia
142 Novosibirsk State University, 630090, Novosibirsk, Russia
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...