Crystallographic Properties of Local Groups of a Delone Set in a Euclidean Plane View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-08

AUTHORS

N. P. Dolbilin, M. I. Shtogrin

ABSTRACT

It is proved that, in any Delone set on a Euclidean plane, a subset of points with a crystallographic local group, i.e., with local rotations of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 1,\;2,\;3,\;4,$$\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6$$\end{document}, is also a Delone set. This result has a number of important implications for regular systems and crystalline structures. By the local group at a point of a set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X,$$\end{document} we mean the group of the cluster of radius \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2R$$\end{document} centered at this point, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} is the radius of a covering of the plane by equal disks with centers in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X.$$\end{document} More... »

PAGES

1265-1274

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965542522080048

DOI

http://dx.doi.org/10.1134/s0965542522080048

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150918512


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Steklov Mathematical Institute, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.426543.2", 
          "name": [
            "Steklov Mathematical Institute, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dolbilin", 
        "givenName": "N. P.", 
        "id": "sg:person.07744515527.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07744515527.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Steklov Mathematical Institute, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.426543.2", 
          "name": [
            "Steklov Mathematical Institute, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shtogrin", 
        "givenName": "M. I.", 
        "id": "sg:person.012551402267.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012551402267.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-030-76798-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1141394813", 
          "https://doi.org/10.1007/978-3-030-76798-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00454-021-00292-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1137532735", 
          "https://doi.org/10.1007/s00454-021-00292-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0081543818060081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111104688", 
          "https://doi.org/10.1134/s0081543818060081"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-08", 
    "datePublishedReg": "2022-08-01", 
    "description": "It is proved that, in any Delone set on a Euclidean plane, a subset of points with a crystallographic local group, i.e., with local rotations of order \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n = 1,\\;2,\\;3,\\;4,$$\\end{document} or \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$6$$\\end{document}, is also a Delone set. This result has a number of important implications for regular systems and crystalline structures. By the local group at a point of a set \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$X,$$\\end{document} we mean the group of the cluster of radius \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2R$$\\end{document} centered at this point, where \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$R$$\\end{document} is the radius of a covering of the plane by equal disks with centers in \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$X.$$\\end{document}", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965542522080048", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136025", 
        "issn": [
          "0965-5425", 
          "1555-6662"
        ], 
        "name": "Computational Mathematics and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "keywords": [
      "group", 
      "important implications", 
      "subset", 
      "point", 
      "results", 
      "number", 
      "implications", 
      "center", 
      "plane", 
      "Local Group", 
      "rotation", 
      "order", 
      "set", 
      "system", 
      "crystalline structure", 
      "clusters", 
      "covering", 
      "disk", 
      "crystallographic properties", 
      "properties", 
      "DeLone", 
      "subset of points", 
      "local rotation", 
      "regular system", 
      "structure", 
      "radius", 
      "equal disks", 
      "Euclidean plane", 
      "Delone sets"
    ], 
    "name": "Crystallographic Properties of Local Groups of a Delone Set in a Euclidean Plane", 
    "pagination": "1265-1274", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150918512"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965542522080048"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965542522080048", 
      "https://app.dimensions.ai/details/publication/pub.1150918512"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_944.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965542522080048"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080048'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080048'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080048'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965542522080048'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      59 URIs      46 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965542522080048 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 anzsrc-for:0105
5 schema:author N39f649ab51fd44d5a70ee0e0a4973d62
6 schema:citation sg:pub.10.1007/978-3-030-76798-3
7 sg:pub.10.1007/s00454-021-00292-6
8 sg:pub.10.1134/s0081543818060081
9 schema:datePublished 2022-08
10 schema:datePublishedReg 2022-08-01
11 schema:description It is proved that, in any Delone set on a Euclidean plane, a subset of points with a crystallographic local group, i.e., with local rotations of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 1,\;2,\;3,\;4,$$\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6$$\end{document}, is also a Delone set. This result has a number of important implications for regular systems and crystalline structures. By the local group at a point of a set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X,$$\end{document} we mean the group of the cluster of radius \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2R$$\end{document} centered at this point, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} is the radius of a covering of the plane by equal disks with centers in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X.$$\end{document}
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf Ne7fecf9cdc434040a9e50d0ae9f3852c
15 Nf3998f8abd0b4056ad554bad6ecaf9fe
16 sg:journal.1136025
17 schema:keywords DeLone
18 Delone sets
19 Euclidean plane
20 Local Group
21 center
22 clusters
23 covering
24 crystalline structure
25 crystallographic properties
26 disk
27 equal disks
28 group
29 implications
30 important implications
31 local rotation
32 number
33 order
34 plane
35 point
36 properties
37 radius
38 regular system
39 results
40 rotation
41 set
42 structure
43 subset
44 subset of points
45 system
46 schema:name Crystallographic Properties of Local Groups of a Delone Set in a Euclidean Plane
47 schema:pagination 1265-1274
48 schema:productId N345e8452603a4ed1a9c4c01da242969c
49 N4c8209dfb8884a07986f11f55d40c8f0
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150918512
51 https://doi.org/10.1134/s0965542522080048
52 schema:sdDatePublished 2022-12-01T06:44
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Ne8b14725729745e6bbeec22cf432014d
55 schema:url https://doi.org/10.1134/s0965542522080048
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N345e8452603a4ed1a9c4c01da242969c schema:name dimensions_id
60 schema:value pub.1150918512
61 rdf:type schema:PropertyValue
62 N39f649ab51fd44d5a70ee0e0a4973d62 rdf:first sg:person.07744515527.05
63 rdf:rest Nb8618de449464fa9995b499ea64ac845
64 N4c8209dfb8884a07986f11f55d40c8f0 schema:name doi
65 schema:value 10.1134/s0965542522080048
66 rdf:type schema:PropertyValue
67 Nb8618de449464fa9995b499ea64ac845 rdf:first sg:person.012551402267.09
68 rdf:rest rdf:nil
69 Ne7fecf9cdc434040a9e50d0ae9f3852c schema:volumeNumber 62
70 rdf:type schema:PublicationVolume
71 Ne8b14725729745e6bbeec22cf432014d schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Nf3998f8abd0b4056ad554bad6ecaf9fe schema:issueNumber 8
74 rdf:type schema:PublicationIssue
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
79 schema:name Applied Mathematics
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
82 schema:name Numerical and Computational Mathematics
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Physics
86 rdf:type schema:DefinedTerm
87 sg:journal.1136025 schema:issn 0965-5425
88 1555-6662
89 schema:name Computational Mathematics and Mathematical Physics
90 schema:publisher Pleiades Publishing
91 rdf:type schema:Periodical
92 sg:person.012551402267.09 schema:affiliation grid-institutes:grid.426543.2
93 schema:familyName Shtogrin
94 schema:givenName M. I.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012551402267.09
96 rdf:type schema:Person
97 sg:person.07744515527.05 schema:affiliation grid-institutes:grid.426543.2
98 schema:familyName Dolbilin
99 schema:givenName N. P.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07744515527.05
101 rdf:type schema:Person
102 sg:pub.10.1007/978-3-030-76798-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141394813
103 https://doi.org/10.1007/978-3-030-76798-3
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00454-021-00292-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137532735
106 https://doi.org/10.1007/s00454-021-00292-6
107 rdf:type schema:CreativeWork
108 sg:pub.10.1134/s0081543818060081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111104688
109 https://doi.org/10.1134/s0081543818060081
110 rdf:type schema:CreativeWork
111 grid-institutes:grid.426543.2 schema:alternateName Steklov Mathematical Institute, Russian Academy of Sciences, 119991, Moscow, Russia
112 schema:name Steklov Mathematical Institute, Russian Academy of Sciences, 119991, Moscow, Russia
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...