Nonlinear Schrödinger Equation and the Hyperbolization Method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07

AUTHORS

A. D. Yunakovsky

ABSTRACT

“Nonstandard” equations (like a nonlinear Schrödinger one) that require very small steps in space and time in numerical computations are considered. Methods for time step increase via hyperbolization, i.e., adding the second time derivative multiplied by a small parameter, are studied. It is shown that the results can be improved by introducing an additional damping term associated with the same small parameter. The limiting values for the relation between the small parameter and the stepsizes in space and time are found. More... »

PAGES

1112-1130

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965542522070119

DOI

http://dx.doi.org/10.1134/s0965542522070119

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150102513


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Applied Physics, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia", 
          "id": "http://www.grid.ac/institutes/grid.410472.4", 
          "name": [
            "Institute of Applied Physics, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yunakovsky", 
        "givenName": "A. D.", 
        "id": "sg:person.012456640253.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012456640253.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11227-005-0183-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023304824", 
          "https://doi.org/10.1007/s11227-005-0183-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-6629-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039974107", 
          "https://doi.org/10.1007/978-1-4020-6629-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266119040153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1114532171", 
          "https://doi.org/10.1134/s0012266119040153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01034484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038547402", 
          "https://doi.org/10.1007/bf01034484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8518-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032678667", 
          "https://doi.org/10.1007/978-3-0348-8518-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-34727-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003484822", 
          "https://doi.org/10.1007/978-0-387-34727-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s0027134918010186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103629178", 
          "https://doi.org/10.3103/s0027134918010186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s096554251012016x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005348276", 
          "https://doi.org/10.1134/s096554251012016x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542506010155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000298880", 
          "https://doi.org/10.1134/s0965542506010155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542518080079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107279769", 
          "https://doi.org/10.1134/s0965542518080079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s2070048213030034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029671391", 
          "https://doi.org/10.1134/s2070048213030034"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-07", 
    "datePublishedReg": "2022-07-01", 
    "description": "Abstract\u201cNonstandard\u201d equations (like a nonlinear Schr\u00f6dinger one) that require very small steps in space and time in numerical computations are considered. Methods for time step increase via hyperbolization, i.e., adding the second time derivative multiplied by a small parameter, are studied. It is shown that the results can be improved by introducing an additional damping term associated with the same small parameter. The limiting values for the relation between the small parameter and the stepsizes in space and time are found.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965542522070119", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136025", 
        "issn": [
          "0965-5425", 
          "1555-6662"
        ], 
        "name": "Computational Mathematics and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "keywords": [
      "small parameter", 
      "same small parameter", 
      "nonlinear Schr\u00f6dinger equation", 
      "time step increases", 
      "second time derivative", 
      "additional damping term", 
      "Schr\u00f6dinger equation", 
      "time derivative", 
      "damping term", 
      "numerical computations", 
      "equations", 
      "stepsizes", 
      "space", 
      "parameters", 
      "computation", 
      "small steps", 
      "hyperbolization", 
      "step increase", 
      "terms", 
      "derivatives", 
      "time", 
      "step", 
      "results", 
      "values", 
      "relation", 
      "increase", 
      "method"
    ], 
    "name": "Nonlinear Schr\u00f6dinger Equation and the Hyperbolization Method", 
    "pagination": "1112-1130", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150102513"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965542522070119"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965542522070119", 
      "https://app.dimensions.ai/details/publication/pub.1150102513"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_947.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965542522070119"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965542522070119'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965542522070119'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965542522070119'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965542522070119'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      63 URIs      44 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965542522070119 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N40d7d852a1e949858623bc07095f1d20
4 schema:citation sg:pub.10.1007/978-0-387-34727-1
5 sg:pub.10.1007/978-1-4020-6629-0
6 sg:pub.10.1007/978-3-0348-8518-8
7 sg:pub.10.1007/bf01034484
8 sg:pub.10.1007/s11227-005-0183-5
9 sg:pub.10.1134/s0012266119040153
10 sg:pub.10.1134/s0965542506010155
11 sg:pub.10.1134/s096554251012016x
12 sg:pub.10.1134/s0965542518080079
13 sg:pub.10.1134/s2070048213030034
14 sg:pub.10.3103/s0027134918010186
15 schema:datePublished 2022-07
16 schema:datePublishedReg 2022-07-01
17 schema:description Abstract“Nonstandard” equations (like a nonlinear Schrödinger one) that require very small steps in space and time in numerical computations are considered. Methods for time step increase via hyperbolization, i.e., adding the second time derivative multiplied by a small parameter, are studied. It is shown that the results can be improved by introducing an additional damping term associated with the same small parameter. The limiting values for the relation between the small parameter and the stepsizes in space and time are found.
18 schema:genre article
19 schema:isAccessibleForFree false
20 schema:isPartOf N9e029b03e15244c08359bf72d2afdfcb
21 Nbff68f613c8e4bc48780b9d87222dcfe
22 sg:journal.1136025
23 schema:keywords Schrödinger equation
24 additional damping term
25 computation
26 damping term
27 derivatives
28 equations
29 hyperbolization
30 increase
31 method
32 nonlinear Schrödinger equation
33 numerical computations
34 parameters
35 relation
36 results
37 same small parameter
38 second time derivative
39 small parameter
40 small steps
41 space
42 step
43 step increase
44 stepsizes
45 terms
46 time
47 time derivative
48 time step increases
49 values
50 schema:name Nonlinear Schrödinger Equation and the Hyperbolization Method
51 schema:pagination 1112-1130
52 schema:productId N3516631a0aff43139f6fe39b14b2722b
53 N935bb48f66414e4d82bd646d8f379909
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150102513
55 https://doi.org/10.1134/s0965542522070119
56 schema:sdDatePublished 2022-11-24T21:09
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N28977e51c1034b7fa355d85f9f296c40
59 schema:url https://doi.org/10.1134/s0965542522070119
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N28977e51c1034b7fa355d85f9f296c40 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N3516631a0aff43139f6fe39b14b2722b schema:name doi
66 schema:value 10.1134/s0965542522070119
67 rdf:type schema:PropertyValue
68 N40d7d852a1e949858623bc07095f1d20 rdf:first sg:person.012456640253.80
69 rdf:rest rdf:nil
70 N935bb48f66414e4d82bd646d8f379909 schema:name dimensions_id
71 schema:value pub.1150102513
72 rdf:type schema:PropertyValue
73 N9e029b03e15244c08359bf72d2afdfcb schema:issueNumber 7
74 rdf:type schema:PublicationIssue
75 Nbff68f613c8e4bc48780b9d87222dcfe schema:volumeNumber 62
76 rdf:type schema:PublicationVolume
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
81 schema:name Applied Mathematics
82 rdf:type schema:DefinedTerm
83 sg:journal.1136025 schema:issn 0965-5425
84 1555-6662
85 schema:name Computational Mathematics and Mathematical Physics
86 schema:publisher Pleiades Publishing
87 rdf:type schema:Periodical
88 sg:person.012456640253.80 schema:affiliation grid-institutes:grid.410472.4
89 schema:familyName Yunakovsky
90 schema:givenName A. D.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012456640253.80
92 rdf:type schema:Person
93 sg:pub.10.1007/978-0-387-34727-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003484822
94 https://doi.org/10.1007/978-0-387-34727-1
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/978-1-4020-6629-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039974107
97 https://doi.org/10.1007/978-1-4020-6629-0
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/978-3-0348-8518-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032678667
100 https://doi.org/10.1007/978-3-0348-8518-8
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf01034484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038547402
103 https://doi.org/10.1007/bf01034484
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s11227-005-0183-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023304824
106 https://doi.org/10.1007/s11227-005-0183-5
107 rdf:type schema:CreativeWork
108 sg:pub.10.1134/s0012266119040153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114532171
109 https://doi.org/10.1134/s0012266119040153
110 rdf:type schema:CreativeWork
111 sg:pub.10.1134/s0965542506010155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000298880
112 https://doi.org/10.1134/s0965542506010155
113 rdf:type schema:CreativeWork
114 sg:pub.10.1134/s096554251012016x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005348276
115 https://doi.org/10.1134/s096554251012016x
116 rdf:type schema:CreativeWork
117 sg:pub.10.1134/s0965542518080079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107279769
118 https://doi.org/10.1134/s0965542518080079
119 rdf:type schema:CreativeWork
120 sg:pub.10.1134/s2070048213030034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029671391
121 https://doi.org/10.1134/s2070048213030034
122 rdf:type schema:CreativeWork
123 sg:pub.10.3103/s0027134918010186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103629178
124 https://doi.org/10.3103/s0027134918010186
125 rdf:type schema:CreativeWork
126 grid-institutes:grid.410472.4 schema:alternateName Institute of Applied Physics, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia
127 schema:name Institute of Applied Physics, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...