# Discrete-Analytical Difference Scheme for Solving the Nonstationary Particle Transport Equation by the Splitting Method

Ontology type: schema:ScholarlyArticle

### Article Info

DATE

2022-07

AUTHORS ABSTRACT

A discrete-analytical difference scheme is presented for solving the nonstationary kinetic particle (neutron) transport equation in the multigroup isotropic approximation by applying the splitting method. A feature of the scheme is that the solution of the transport equation in the multigroup model is reduced to solving equations in the one-group model. The efficiency of the scheme is ensured by computing the collision integral with the use of analytical solutions of ordinary differential equations describing the evolution of neutrons arriving at the group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} from all groups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g{\kern 1pt} '$$\end{document}. Solutions of the equations are found without using iteration with respect to the collision integral or matrix inversion. The solution method can naturally be generalized to problems in multidimensional spaces and can be parallelized. More... »

PAGES

1171-1179

### References to SciGraph publications

• 2011-05-20. High-order accurate implicit running schemes in COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS
• 2008-07-18. Arbitrary-order difference schemes for solving linear advection equations with constant coefficients by the Godunov method with antidiffusion in COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS
• 2016-08. Modified splitting method for solving the nonstationary kinetic particle transport equation in COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965542522070077

DOI

http://dx.doi.org/10.1134/s0965542522070077

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150102509

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Russian Federal Nuclear Center\u2014Zababakhin All-Russia Research Institute of Technical Physics, 456770, Snezhinsk, Chelyabinsk oblast, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Russian Federal Nuclear Center\u2014Zababakhin All-Russia Research Institute of Technical Physics, 456770, Snezhinsk, Chelyabinsk oblast, Russia"
],
"type": "Organization"
},
"familyName": "Moiseev",
"givenName": "N. Ya.",
"id": "sg:person.012714123675.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012714123675.92"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Russian Federal Nuclear Center\u2014Zababakhin All-Russia Research Institute of Technical Physics, 456770, Snezhinsk, Chelyabinsk oblast, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Russian Federal Nuclear Center\u2014Zababakhin All-Russia Research Institute of Technical Physics, 456770, Snezhinsk, Chelyabinsk oblast, Russia"
],
"type": "Organization"
},
"familyName": "Shmakov",
"givenName": "V. M.",
"id": "sg:person.013532263216.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013532263216.86"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1134/s096554251608011x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037326296",
"https://doi.org/10.1134/s096554251608011x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s0965542508070129",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047239098",
"https://doi.org/10.1134/s0965542508070129"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s0965542511050101",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000811485",
"https://doi.org/10.1134/s0965542511050101"
],
"type": "CreativeWork"
}
],
"datePublished": "2022-07",
"datePublishedReg": "2022-07-01",
"description": "A discrete-analytical difference scheme is presented for solving the nonstationary kinetic particle (neutron) transport equation in the multigroup isotropic approximation by applying the splitting method. A feature of the scheme is that the solution of the transport equation in the multigroup model is reduced to solving equations in the one-group model. The efficiency of the scheme is ensured by computing the collision integral with the use of analytical solutions of ordinary differential equations describing the evolution of neutrons arriving at the group \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$g$$\\end{document} from all groups \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$g{\\kern 1pt} '$$\\end{document}. Solutions of the equations are found without using iteration with respect to the collision integral or matrix inversion. The solution method can naturally be generalized to problems in multidimensional spaces and can be parallelized.",
"genre": "article",
"id": "sg:pub.10.1134/s0965542522070077",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136025",
"issn": [
"0965-5425",
"1555-6662"
],
"name": "Computational Mathematics and Mathematical Physics",
"type": "Periodical"
},
{
"issueNumber": "7",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"particle transport equation",
"transport equation",
"difference scheme",
"splitting method",
"collision integral",
"ordinary differential equations",
"one-group model",
"differential equations",
"matrix inversion",
"analytical solution",
"solution method",
"equations",
"isotropic approximation",
"multigroup model",
"evolution of neutron",
"multidimensional space",
"integrals",
"scheme",
"solution",
"approximation",
"iteration",
"model",
"space",
"neutrons",
"inversion",
"problem",
"evolution",
"respect",
"efficiency",
"features",
"use",
"group",
"method"
],
"name": "Discrete-Analytical Difference Scheme for Solving the Nonstationary Particle Transport Equation by the Splitting Method",
"pagination": "1171-1179",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1150102509"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s0965542522070077"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s0965542522070077",
"https://app.dimensions.ai/details/publication/pub.1150102509"
],
"sdDataset": "articles",
"sdDatePublished": "2022-11-24T21:09",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_955.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s0965542522070077"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965542522070077'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965542522070077'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965542522070077'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965542522070077'

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      61 URIs      50 LITERALS      6 BLANK NODES

Subject Predicate Object
2 anzsrc-for:0103
3 schema:author N9cc1407171b947649c549db2f85e2ef1
4 schema:citation sg:pub.10.1134/s0965542508070129
5 sg:pub.10.1134/s0965542511050101
6 sg:pub.10.1134/s096554251608011x
7 schema:datePublished 2022-07
8 schema:datePublishedReg 2022-07-01
9 schema:description A discrete-analytical difference scheme is presented for solving the nonstationary kinetic particle (neutron) transport equation in the multigroup isotropic approximation by applying the splitting method. A feature of the scheme is that the solution of the transport equation in the multigroup model is reduced to solving equations in the one-group model. The efficiency of the scheme is ensured by computing the collision integral with the use of analytical solutions of ordinary differential equations describing the evolution of neutrons arriving at the group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} from all groups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g{\kern 1pt} '$$\end{document}. Solutions of the equations are found without using iteration with respect to the collision integral or matrix inversion. The solution method can naturally be generalized to problems in multidimensional spaces and can be parallelized.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N391b480d332f4b3e979a447fa9809c05
13 Nab4ba87bac9e4c4fa3df586fc75711bf
14 sg:journal.1136025
15 schema:keywords analytical solution
16 approximation
17 collision integral
18 difference scheme
19 differential equations
20 efficiency
21 equations
22 evolution
23 evolution of neutron
24 features
25 group
26 integrals
27 inversion
28 isotropic approximation
29 iteration
30 matrix inversion
31 method
32 model
33 multidimensional space
34 multigroup model
35 neutrons
36 one-group model
37 ordinary differential equations
38 particle transport equation
39 problem
40 respect
41 scheme
42 solution
43 solution method
44 space
45 splitting method
46 transport equation
47 use
48 schema:name Discrete-Analytical Difference Scheme for Solving the Nonstationary Particle Transport Equation by the Splitting Method
49 schema:pagination 1171-1179
50 schema:productId N445d786aeb0f4ab89130e0e3bf08d5de
51 N74fa1daf908e49079e7c3b2679f207ac
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150102509
53 https://doi.org/10.1134/s0965542522070077
54 schema:sdDatePublished 2022-11-24T21:09
56 schema:sdPublisher N18e8e7311aac4b59b9acbdc9e7044d3f
57 schema:url https://doi.org/10.1134/s0965542522070077
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N18e8e7311aac4b59b9acbdc9e7044d3f schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N391b480d332f4b3e979a447fa9809c05 schema:issueNumber 7
64 rdf:type schema:PublicationIssue
65 N41b5fbcd6b9d4b45b2f52f90b6e50c95 rdf:first sg:person.013532263216.86
66 rdf:rest rdf:nil
67 N445d786aeb0f4ab89130e0e3bf08d5de schema:name doi
68 schema:value 10.1134/s0965542522070077
69 rdf:type schema:PropertyValue
70 N74fa1daf908e49079e7c3b2679f207ac schema:name dimensions_id
71 schema:value pub.1150102509
72 rdf:type schema:PropertyValue
73 N9cc1407171b947649c549db2f85e2ef1 rdf:first sg:person.012714123675.92
74 rdf:rest N41b5fbcd6b9d4b45b2f52f90b6e50c95
76 rdf:type schema:PublicationVolume
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
81 schema:name Numerical and Computational Mathematics
82 rdf:type schema:DefinedTerm
83 sg:journal.1136025 schema:issn 0965-5425
84 1555-6662
85 schema:name Computational Mathematics and Mathematical Physics
87 rdf:type schema:Periodical
88 sg:person.012714123675.92 schema:affiliation grid-institutes:None
89 schema:familyName Moiseev
90 schema:givenName N. Ya.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012714123675.92
92 rdf:type schema:Person
93 sg:person.013532263216.86 schema:affiliation grid-institutes:None
94 schema:familyName Shmakov
95 schema:givenName V. M.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013532263216.86
97 rdf:type schema:Person
98 sg:pub.10.1134/s0965542508070129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047239098
99 https://doi.org/10.1134/s0965542508070129
100 rdf:type schema:CreativeWork
101 sg:pub.10.1134/s0965542511050101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000811485
102 https://doi.org/10.1134/s0965542511050101
103 rdf:type schema:CreativeWork
104 sg:pub.10.1134/s096554251608011x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037326296
105 https://doi.org/10.1134/s096554251608011x
106 rdf:type schema:CreativeWork
107 grid-institutes:None schema:alternateName Russian Federal Nuclear Center—Zababakhin All-Russia Research Institute of Technical Physics, 456770, Snezhinsk, Chelyabinsk oblast, Russia
108 schema:name Russian Federal Nuclear Center—Zababakhin All-Russia Research Institute of Technical Physics, 456770, Snezhinsk, Chelyabinsk oblast, Russia
109 rdf:type schema:Organization