Summation of Poincaré Theta Series in the Schottky Model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07

AUTHORS

S. Yu. Lyamaev

ABSTRACT

New algorithms for approximate summation of Poincaré theta series in the Schottky model of real hyperelliptic curves are proposed. As a result, for the same output accuracy estimate, the amount of computations is reduced by several times in the case of slow convergence and by tens of percent in the usual situations. For the sum of the Poincaré series over the subtree on descendants of a given node, a new estimate in terms of the series member at this node is obtained. More... »

PAGES

1059-1073

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965542522070053

DOI

http://dx.doi.org/10.1134/s0965542522070053

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150102507


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lyamaev", 
        "givenName": "S. Yu.", 
        "id": "sg:person.013664523335.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013664523335.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03321646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039786626", 
          "https://doi.org/10.1007/bf03321646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-25634-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037748525", 
          "https://doi.org/10.1007/978-3-642-25634-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02418420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002090478", 
          "https://doi.org/10.1007/bf02418420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0081543820060024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1135077844", 
          "https://doi.org/10.1134/s0081543820060024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0040577917100117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092634566", 
          "https://doi.org/10.1134/s0040577917100117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0032946017030073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092226062", 
          "https://doi.org/10.1134/s0032946017030073"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-07", 
    "datePublishedReg": "2022-07-01", 
    "description": "New algorithms for approximate summation of Poincar\u00e9 theta series in the Schottky model of real hyperelliptic curves are proposed. As a result, for the same output accuracy estimate, the amount of computations is reduced by several times in the case of slow convergence and by tens of percent in the usual situations. For the sum of the Poincar\u00e9 series over the subtree on descendants of a given node, a new estimate in terms of the series member at this node is obtained.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965542522070053", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136025", 
        "issn": [
          "0965-5425", 
          "1555-6662"
        ], 
        "name": "Computational Mathematics and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "keywords": [
      "percent", 
      "cases", 
      "series", 
      "nodes", 
      "summation", 
      "accuracy estimates", 
      "members", 
      "time", 
      "curves", 
      "estimates", 
      "model", 
      "results", 
      "amount", 
      "usual situation", 
      "Poincar\u00e9 theta series", 
      "situation", 
      "terms", 
      "Schottky model", 
      "sum", 
      "theta series", 
      "amount of computation", 
      "real hyperelliptic curves", 
      "descendants", 
      "approximate summation", 
      "hyperelliptic curves", 
      "slow convergence", 
      "Poincar\u00e9 series", 
      "new algorithm", 
      "tens of percent", 
      "new estimates", 
      "series members", 
      "convergence", 
      "computation", 
      "algorithm", 
      "tens", 
      "subtrees"
    ], 
    "name": "Summation of Poincar\u00e9 Theta Series in the Schottky Model", 
    "pagination": "1059-1073", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150102507"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965542522070053"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965542522070053", 
      "https://app.dimensions.ai/details/publication/pub.1150102507"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_950.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965542522070053"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965542522070053'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965542522070053'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965542522070053'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965542522070053'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      67 URIs      53 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965542522070053 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Na2faaaf156a54eef9aacc2ead22c9945
4 schema:citation sg:pub.10.1007/978-3-642-25634-9
5 sg:pub.10.1007/bf02418420
6 sg:pub.10.1007/bf03321646
7 sg:pub.10.1134/s0032946017030073
8 sg:pub.10.1134/s0040577917100117
9 sg:pub.10.1134/s0081543820060024
10 schema:datePublished 2022-07
11 schema:datePublishedReg 2022-07-01
12 schema:description New algorithms for approximate summation of Poincaré theta series in the Schottky model of real hyperelliptic curves are proposed. As a result, for the same output accuracy estimate, the amount of computations is reduced by several times in the case of slow convergence and by tens of percent in the usual situations. For the sum of the Poincaré series over the subtree on descendants of a given node, a new estimate in terms of the series member at this node is obtained.
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf N33976c92d3b94778b72c41617889950d
16 N60c03a5ac2fd4480b07e053140896934
17 sg:journal.1136025
18 schema:keywords Poincaré series
19 Poincaré theta series
20 Schottky model
21 accuracy estimates
22 algorithm
23 amount
24 amount of computation
25 approximate summation
26 cases
27 computation
28 convergence
29 curves
30 descendants
31 estimates
32 hyperelliptic curves
33 members
34 model
35 new algorithm
36 new estimates
37 nodes
38 percent
39 real hyperelliptic curves
40 results
41 series
42 series members
43 situation
44 slow convergence
45 subtrees
46 sum
47 summation
48 tens
49 tens of percent
50 terms
51 theta series
52 time
53 usual situation
54 schema:name Summation of Poincaré Theta Series in the Schottky Model
55 schema:pagination 1059-1073
56 schema:productId N02957d6d6f0d41c28ba3c93094cfba36
57 N186ab3a9833e4a1e9b32a4079e503d42
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150102507
59 https://doi.org/10.1134/s0965542522070053
60 schema:sdDatePublished 2022-11-24T21:09
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N23cda045a1f94620a209b4078e351275
63 schema:url https://doi.org/10.1134/s0965542522070053
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N02957d6d6f0d41c28ba3c93094cfba36 schema:name dimensions_id
68 schema:value pub.1150102507
69 rdf:type schema:PropertyValue
70 N186ab3a9833e4a1e9b32a4079e503d42 schema:name doi
71 schema:value 10.1134/s0965542522070053
72 rdf:type schema:PropertyValue
73 N23cda045a1f94620a209b4078e351275 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N33976c92d3b94778b72c41617889950d schema:issueNumber 7
76 rdf:type schema:PublicationIssue
77 N60c03a5ac2fd4480b07e053140896934 schema:volumeNumber 62
78 rdf:type schema:PublicationVolume
79 Na2faaaf156a54eef9aacc2ead22c9945 rdf:first sg:person.013664523335.01
80 rdf:rest rdf:nil
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
85 schema:name Applied Mathematics
86 rdf:type schema:DefinedTerm
87 sg:journal.1136025 schema:issn 0965-5425
88 1555-6662
89 schema:name Computational Mathematics and Mathematical Physics
90 schema:publisher Pleiades Publishing
91 rdf:type schema:Periodical
92 sg:person.013664523335.01 schema:affiliation grid-institutes:grid.4886.2
93 schema:familyName Lyamaev
94 schema:givenName S. Yu.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013664523335.01
96 rdf:type schema:Person
97 sg:pub.10.1007/978-3-642-25634-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037748525
98 https://doi.org/10.1007/978-3-642-25634-9
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf02418420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002090478
101 https://doi.org/10.1007/bf02418420
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf03321646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039786626
104 https://doi.org/10.1007/bf03321646
105 rdf:type schema:CreativeWork
106 sg:pub.10.1134/s0032946017030073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092226062
107 https://doi.org/10.1134/s0032946017030073
108 rdf:type schema:CreativeWork
109 sg:pub.10.1134/s0040577917100117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092634566
110 https://doi.org/10.1134/s0040577917100117
111 rdf:type schema:CreativeWork
112 sg:pub.10.1134/s0081543820060024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135077844
113 https://doi.org/10.1134/s0081543820060024
114 rdf:type schema:CreativeWork
115 grid-institutes:grid.4886.2 schema:alternateName Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia
116 schema:name Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...