Nonlinear Finite Volume Method for the Interface Advection-Compression Problem on Unstructured Adaptive Meshes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07

AUTHORS

Yu. V. Vassilevski, K. M. Terekhov

ABSTRACT

The paper is devoted to the nonlinear finite volume method applied for tracking interfaces on unstructured adaptive meshes. The fluid of volume approach is used. The interface location is described by the fraction of fluid in each computational cell. The interface propagation involves the simultaneous solution of the fraction advection and interface compression problems. The compression problem is solved to recover the interface (front) sharpness, which is smeared due to numerical diffusion. The problem discretization is carried out using the nonlinear monotone finite volume method. This method is applied to unstructured meshes with adaptive local refinement. More... »

PAGES

1041-1058

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965542522060148

DOI

http://dx.doi.org/10.1134/s0965542522060148

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150102504


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sechenov University, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.448878.f", 
          "name": [
            "Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia", 
            "Sechenov University, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vassilevski", 
        "givenName": "Yu. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology, 141701, Dolgoprudnyi, Moscow oblast, Russia", 
          "id": "http://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia", 
            "Moscow Institute of Physics and Technology, 141701, Dolgoprudnyi, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terekhov", 
        "givenName": "K. M.", 
        "id": "sg:person.010235066145.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010235066145.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-030-47232-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1128801558", 
          "https://doi.org/10.1007/978-3-030-47232-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1025368328471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008634779", 
          "https://doi.org/10.1023/a:1025368328471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12206-015-0405-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040849499", 
          "https://doi.org/10.1007/s12206-015-0405-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-07", 
    "datePublishedReg": "2022-07-01", 
    "description": "The paper is devoted to the nonlinear finite volume method applied for tracking interfaces on unstructured adaptive meshes. The fluid of volume approach is used. The interface location is described by the fraction of fluid in each computational cell. The interface propagation involves the simultaneous solution of the fraction advection and interface compression problems. The compression problem is solved to recover the interface (front) sharpness, which is smeared due to numerical diffusion. The problem discretization is carried out using the nonlinear monotone finite volume method. This method is applied to unstructured meshes with adaptive local refinement.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965542522060148", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136025", 
        "issn": [
          "0965-5425", 
          "1555-6662"
        ], 
        "name": "Computational Mathematics and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "keywords": [
      "finite volume method", 
      "volume method", 
      "nonlinear finite volume method", 
      "unstructured adaptive meshes", 
      "adaptive mesh", 
      "fraction of fluid", 
      "volume approach", 
      "interface location", 
      "monotone finite volume method", 
      "adaptive local refinement", 
      "numerical diffusion", 
      "interface propagation", 
      "interface sharpness", 
      "computational cells", 
      "unstructured meshes", 
      "simultaneous solution", 
      "mesh", 
      "problem discretization", 
      "local refinement", 
      "compression problem", 
      "fluid", 
      "method", 
      "interface", 
      "discretization", 
      "propagation", 
      "advection", 
      "diffusion", 
      "problem", 
      "solution", 
      "sharpness", 
      "refinement", 
      "location", 
      "fraction", 
      "approach", 
      "cells", 
      "paper"
    ], 
    "name": "Nonlinear Finite Volume Method for the Interface Advection-Compression Problem on Unstructured Adaptive Meshes", 
    "pagination": "1041-1058", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150102504"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965542522060148"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965542522060148", 
      "https://app.dimensions.ai/details/publication/pub.1150102504"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_935.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965542522060148"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965542522060148'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965542522060148'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965542522060148'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965542522060148'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      66 URIs      53 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965542522060148 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 anzsrc-for:0105
5 schema:author Nace02064e8ab4510b2f70fb7f8af9c8f
6 schema:citation sg:pub.10.1007/978-3-030-47232-0
7 sg:pub.10.1007/s12206-015-0405-6
8 sg:pub.10.1023/a:1025368328471
9 schema:datePublished 2022-07
10 schema:datePublishedReg 2022-07-01
11 schema:description The paper is devoted to the nonlinear finite volume method applied for tracking interfaces on unstructured adaptive meshes. The fluid of volume approach is used. The interface location is described by the fraction of fluid in each computational cell. The interface propagation involves the simultaneous solution of the fraction advection and interface compression problems. The compression problem is solved to recover the interface (front) sharpness, which is smeared due to numerical diffusion. The problem discretization is carried out using the nonlinear monotone finite volume method. This method is applied to unstructured meshes with adaptive local refinement.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N5903ca82836845409ca1f6aaaa0ead69
15 Nb1651ea7e6234d229c9b37a9dc385d4d
16 sg:journal.1136025
17 schema:keywords adaptive local refinement
18 adaptive mesh
19 advection
20 approach
21 cells
22 compression problem
23 computational cells
24 diffusion
25 discretization
26 finite volume method
27 fluid
28 fraction
29 fraction of fluid
30 interface
31 interface location
32 interface propagation
33 interface sharpness
34 local refinement
35 location
36 mesh
37 method
38 monotone finite volume method
39 nonlinear finite volume method
40 numerical diffusion
41 paper
42 problem
43 problem discretization
44 propagation
45 refinement
46 sharpness
47 simultaneous solution
48 solution
49 unstructured adaptive meshes
50 unstructured meshes
51 volume approach
52 volume method
53 schema:name Nonlinear Finite Volume Method for the Interface Advection-Compression Problem on Unstructured Adaptive Meshes
54 schema:pagination 1041-1058
55 schema:productId N77b39206b62f4775b90ddd4225ebd0a8
56 Ne109ef6ab0c845b7aa8bf66585106d71
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150102504
58 https://doi.org/10.1134/s0965542522060148
59 schema:sdDatePublished 2022-12-01T06:44
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N24a1598894af41698e1459a97676b4df
62 schema:url https://doi.org/10.1134/s0965542522060148
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N24a1598894af41698e1459a97676b4df schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N48d7b4a6efb449e0ad7c619e9adce8b2 rdf:first sg:person.010235066145.71
69 rdf:rest rdf:nil
70 N5903ca82836845409ca1f6aaaa0ead69 schema:volumeNumber 62
71 rdf:type schema:PublicationVolume
72 N77b39206b62f4775b90ddd4225ebd0a8 schema:name dimensions_id
73 schema:value pub.1150102504
74 rdf:type schema:PropertyValue
75 Nace02064e8ab4510b2f70fb7f8af9c8f rdf:first Nc25a803dc4374317a1e3936a612a83a0
76 rdf:rest N48d7b4a6efb449e0ad7c619e9adce8b2
77 Nb1651ea7e6234d229c9b37a9dc385d4d schema:issueNumber 7
78 rdf:type schema:PublicationIssue
79 Nc25a803dc4374317a1e3936a612a83a0 schema:affiliation grid-institutes:grid.448878.f
80 schema:familyName Vassilevski
81 schema:givenName Yu. V.
82 rdf:type schema:Person
83 Ne109ef6ab0c845b7aa8bf66585106d71 schema:name doi
84 schema:value 10.1134/s0965542522060148
85 rdf:type schema:PropertyValue
86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
90 schema:name Applied Mathematics
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
93 schema:name Numerical and Computational Mathematics
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
96 schema:name Mathematical Physics
97 rdf:type schema:DefinedTerm
98 sg:journal.1136025 schema:issn 0965-5425
99 1555-6662
100 schema:name Computational Mathematics and Mathematical Physics
101 schema:publisher Pleiades Publishing
102 rdf:type schema:Periodical
103 sg:person.010235066145.71 schema:affiliation grid-institutes:grid.18763.3b
104 schema:familyName Terekhov
105 schema:givenName K. M.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010235066145.71
107 rdf:type schema:Person
108 sg:pub.10.1007/978-3-030-47232-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128801558
109 https://doi.org/10.1007/978-3-030-47232-0
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s12206-015-0405-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040849499
112 https://doi.org/10.1007/s12206-015-0405-6
113 rdf:type schema:CreativeWork
114 sg:pub.10.1023/a:1025368328471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008634779
115 https://doi.org/10.1023/a:1025368328471
116 rdf:type schema:CreativeWork
117 grid-institutes:grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology, 141701, Dolgoprudnyi, Moscow oblast, Russia
118 schema:name Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia
119 Moscow Institute of Physics and Technology, 141701, Dolgoprudnyi, Moscow oblast, Russia
120 rdf:type schema:Organization
121 grid-institutes:grid.448878.f schema:alternateName Sechenov University, 119991, Moscow, Russia
122 schema:name Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia
123 Sechenov University, 119991, Moscow, Russia
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...