Existence, Asymptotics, Stability and Region of Attraction of a Periodic Boundary Layer Solution in Case of a Double Root of ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

V. F. Butuzov, N. N. Nefedov, L. Recke, K. R. Schneider

ABSTRACT

For a singularly perturbed parabolic problem with Dirichlet conditions we prove the existence of a solution periodic in time and with boundary layers at both ends of the space interval in the case that the degenerate equation has a double root. We construct the corresponding asymptotic expansion in the small parameter. It turns out that the algorithm of the construction of the boundary layer functions and the behavior of the solution in the boundary layers essentially differ from that ones in case of a simple root. We also investigate the stability of this solution and the corresponding region of attraction. More... »

PAGES

1989-2001

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965542518120072

DOI

http://dx.doi.org/10.1134/s0965542518120072

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111953492


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Faculty of Physics, Moscow State University, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Butuzov", 
        "givenName": "V. F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Faculty of Physics, Moscow State University, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nefedov", 
        "givenName": "N. N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Humboldt University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.7468.d", 
          "name": [
            "HU Berlin, Institut f\u00fcr Mathematik, 12489, Berlin-Adlershof, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Recke", 
        "givenName": "L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weierstrass Institute for Applied Analysis and Stochastics", 
          "id": "https://www.grid.ac/institutes/grid.433806.a", 
          "name": [
            "Weierstrass Institute for Applied Analysis and Stochastics, 10117, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schneider", 
        "givenName": "K. R.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.na.2013.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004114225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0001434613070067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009709126", 
          "https://doi.org/10.1134/s0001434613070067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2008.07.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021359420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0081543810010189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029982648", 
          "https://doi.org/10.1134/s0081543810010189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0081543810010189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029982648", 
          "https://doi.org/10.1134/s0081543810010189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542511010064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044230436", 
          "https://doi.org/10.1134/s0965542511010064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00036811.2011.567192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046976893"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "For a singularly perturbed parabolic problem with Dirichlet conditions we prove the existence of a solution periodic in time and with boundary layers at both ends of the space interval in the case that the degenerate equation has a double root. We construct the corresponding asymptotic expansion in the small parameter. It turns out that the algorithm of the construction of the boundary layer functions and the behavior of the solution in the boundary layers essentially differ from that ones in case of a simple root. We also investigate the stability of this solution and the corresponding region of attraction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0965542518120072", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6745862", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6751575", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136025", 
        "issn": [
          "0965-5425", 
          "1555-6662"
        ], 
        "name": "Computational Mathematics and Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Existence, Asymptotics, Stability and Region of Attraction of a Periodic Boundary Layer Solution in Case of a Double Root of the Degenerate Equation", 
    "pagination": "1989-2001", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "747f875633405e475b0a7d576a40d8e1f59b6320dfaf64c1c4ee7b22c338a293"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965542518120072"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111953492"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965542518120072", 
      "https://app.dimensions.ai/details/publication/pub.1111953492"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000331_0000000331/records_105409_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0965542518120072"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965542518120072'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965542518120072'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965542518120072'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965542518120072'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965542518120072 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N08be6aaaea124d9ab530226ff9dab5cf
4 schema:citation sg:pub.10.1134/s0001434613070067
5 sg:pub.10.1134/s0081543810010189
6 sg:pub.10.1134/s0965542511010064
7 https://doi.org/10.1016/j.jmaa.2008.07.040
8 https://doi.org/10.1016/j.na.2013.01.013
9 https://doi.org/10.1080/00036811.2011.567192
10 schema:datePublished 2018-12
11 schema:datePublishedReg 2018-12-01
12 schema:description For a singularly perturbed parabolic problem with Dirichlet conditions we prove the existence of a solution periodic in time and with boundary layers at both ends of the space interval in the case that the degenerate equation has a double root. We construct the corresponding asymptotic expansion in the small parameter. It turns out that the algorithm of the construction of the boundary layer functions and the behavior of the solution in the boundary layers essentially differ from that ones in case of a simple root. We also investigate the stability of this solution and the corresponding region of attraction.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N425df7b6ae61484b92159fa9de50f4a2
17 N45c931122543478a95932c1110993520
18 sg:journal.1136025
19 schema:name Existence, Asymptotics, Stability and Region of Attraction of a Periodic Boundary Layer Solution in Case of a Double Root of the Degenerate Equation
20 schema:pagination 1989-2001
21 schema:productId N0aa685c4f6a44be7a11692eba0fc03c7
22 N50beb2395ee94023a9dcb158160bc963
23 N8285f001771e4d3cb2e255b47ee7d37d
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111953492
25 https://doi.org/10.1134/s0965542518120072
26 schema:sdDatePublished 2019-04-11T09:02
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N8cec1116838e4f5ea0cae7a655dbbdf1
29 schema:url https://link.springer.com/10.1134%2FS0965542518120072
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N08be6aaaea124d9ab530226ff9dab5cf rdf:first N0b1f6b4f6aa14d718a33f92ae930ce8e
34 rdf:rest N3afdf277c9234ec8b7f044857a911ad4
35 N0aa685c4f6a44be7a11692eba0fc03c7 schema:name readcube_id
36 schema:value 747f875633405e475b0a7d576a40d8e1f59b6320dfaf64c1c4ee7b22c338a293
37 rdf:type schema:PropertyValue
38 N0b1f6b4f6aa14d718a33f92ae930ce8e schema:affiliation https://www.grid.ac/institutes/grid.14476.30
39 schema:familyName Butuzov
40 schema:givenName V. F.
41 rdf:type schema:Person
42 N3afdf277c9234ec8b7f044857a911ad4 rdf:first N7d23e0753b1f432698dfebb585b3ecfe
43 rdf:rest N4f79845d75a54e6c84a203fb9a0bb973
44 N425df7b6ae61484b92159fa9de50f4a2 schema:volumeNumber 58
45 rdf:type schema:PublicationVolume
46 N45c931122543478a95932c1110993520 schema:issueNumber 12
47 rdf:type schema:PublicationIssue
48 N49b1656f27ea47aa8676f165ee9e23af schema:affiliation https://www.grid.ac/institutes/grid.7468.d
49 schema:familyName Recke
50 schema:givenName L.
51 rdf:type schema:Person
52 N4f79845d75a54e6c84a203fb9a0bb973 rdf:first N49b1656f27ea47aa8676f165ee9e23af
53 rdf:rest N8360e1b70c234f14beca73010fa6c01b
54 N50beb2395ee94023a9dcb158160bc963 schema:name dimensions_id
55 schema:value pub.1111953492
56 rdf:type schema:PropertyValue
57 N5beea4c2f6ea49b79a3b2ef2ce485119 schema:affiliation https://www.grid.ac/institutes/grid.433806.a
58 schema:familyName Schneider
59 schema:givenName K. R.
60 rdf:type schema:Person
61 N7d23e0753b1f432698dfebb585b3ecfe schema:affiliation https://www.grid.ac/institutes/grid.14476.30
62 schema:familyName Nefedov
63 schema:givenName N. N.
64 rdf:type schema:Person
65 N8285f001771e4d3cb2e255b47ee7d37d schema:name doi
66 schema:value 10.1134/s0965542518120072
67 rdf:type schema:PropertyValue
68 N8360e1b70c234f14beca73010fa6c01b rdf:first N5beea4c2f6ea49b79a3b2ef2ce485119
69 rdf:rest rdf:nil
70 N8cec1116838e4f5ea0cae7a655dbbdf1 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
73 schema:name Engineering
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
76 schema:name Interdisciplinary Engineering
77 rdf:type schema:DefinedTerm
78 sg:grant.6745862 http://pending.schema.org/fundedItem sg:pub.10.1134/s0965542518120072
79 rdf:type schema:MonetaryGrant
80 sg:grant.6751575 http://pending.schema.org/fundedItem sg:pub.10.1134/s0965542518120072
81 rdf:type schema:MonetaryGrant
82 sg:journal.1136025 schema:issn 0965-5425
83 1555-6662
84 schema:name Computational Mathematics and Mathematical Physics
85 rdf:type schema:Periodical
86 sg:pub.10.1134/s0001434613070067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009709126
87 https://doi.org/10.1134/s0001434613070067
88 rdf:type schema:CreativeWork
89 sg:pub.10.1134/s0081543810010189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029982648
90 https://doi.org/10.1134/s0081543810010189
91 rdf:type schema:CreativeWork
92 sg:pub.10.1134/s0965542511010064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044230436
93 https://doi.org/10.1134/s0965542511010064
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.jmaa.2008.07.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021359420
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.na.2013.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004114225
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1080/00036811.2011.567192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046976893
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
102 schema:name Faculty of Physics, Moscow State University, 119991, Moscow, Russia
103 rdf:type schema:Organization
104 https://www.grid.ac/institutes/grid.433806.a schema:alternateName Weierstrass Institute for Applied Analysis and Stochastics
105 schema:name Weierstrass Institute for Applied Analysis and Stochastics, 10117, Berlin, Germany
106 rdf:type schema:Organization
107 https://www.grid.ac/institutes/grid.7468.d schema:alternateName Humboldt University of Berlin
108 schema:name HU Berlin, Institut für Mathematik, 12489, Berlin-Adlershof, Germany
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...