Identification of the Thermal Conductivity Coefficient Using a Given Surface Heat Flux View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

A. F. Albu, V. I. Zubov

ABSTRACT

The inverse problem of determining a temperature-dependent thermal conductivity coefficient is studied. The study is based on the Dirichlet boundary value problem for the two-dimensional nonstationary heat equation. The cost functional is defined as the rms deviation of the surface heat flux from experimental data. For the numerical solution of the problem, an algorithm based on the modern fast automatic differentiation technique is proposed. Examples of solving the posed problem are given. More... »

PAGES

2031-2042

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965542518120023

DOI

http://dx.doi.org/10.1134/s0965542518120023

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111953487


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Dorodnicyn Computing Center, Federal Research Center \u201cComputer Science and Control,\u201d\nRussian Academy of Sciences, 119333, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Albu", 
        "givenName": "A. F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology", 
          "id": "https://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "Dorodnicyn Computing Center, Federal Research Center \u201cComputer Science and Control,\u201d\nRussian Academy of Sciences, 119333, Moscow, Russia", 
            "Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zubov", 
        "givenName": "V. I.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0965542514120057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011990360", 
          "https://doi.org/10.1134/s0965542514120057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542516100146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014364820", 
          "https://doi.org/10.1134/s0965542516100146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542516100146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014364820", 
          "https://doi.org/10.1134/s0965542516100146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542516110075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017763994", 
          "https://doi.org/10.1134/s0965542516110075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542516110075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017763994", 
          "https://doi.org/10.1134/s0965542516110075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0018151x09030183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024516043", 
          "https://doi.org/10.1134/s0018151x09030183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-69404-7_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092342718", 
          "https://doi.org/10.1007/978-3-319-69404-7_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542518100032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109764823", 
          "https://doi.org/10.1134/s0965542518100032"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The inverse problem of determining a temperature-dependent thermal conductivity coefficient is studied. The study is based on the Dirichlet boundary value problem for the two-dimensional nonstationary heat equation. The cost functional is defined as the rms deviation of the surface heat flux from experimental data. For the numerical solution of the problem, an algorithm based on the modern fast automatic differentiation technique is proposed. Examples of solving the posed problem are given.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0965542518120023", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5341203", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136025", 
        "issn": [
          "0965-5425", 
          "1555-6662"
        ], 
        "name": "Computational Mathematics and Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Identification of the Thermal Conductivity Coefficient Using a Given Surface Heat Flux", 
    "pagination": "2031-2042", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "884c410276407071968bb39fad16c530c10ecf5f9d67fb00ddb8360df5da7429"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965542518120023"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111953487"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965542518120023", 
      "https://app.dimensions.ai/details/publication/pub.1111953487"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000331_0000000331/records_105436_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0965542518120023"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965542518120023'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965542518120023'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965542518120023'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965542518120023'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965542518120023 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N1e2fa3519cc74eedbf9c2c2316c7f072
4 schema:citation sg:pub.10.1007/978-3-319-69404-7_21
5 sg:pub.10.1134/s0018151x09030183
6 sg:pub.10.1134/s0965542514120057
7 sg:pub.10.1134/s0965542516100146
8 sg:pub.10.1134/s0965542516110075
9 sg:pub.10.1134/s0965542518100032
10 schema:datePublished 2018-12
11 schema:datePublishedReg 2018-12-01
12 schema:description The inverse problem of determining a temperature-dependent thermal conductivity coefficient is studied. The study is based on the Dirichlet boundary value problem for the two-dimensional nonstationary heat equation. The cost functional is defined as the rms deviation of the surface heat flux from experimental data. For the numerical solution of the problem, an algorithm based on the modern fast automatic differentiation technique is proposed. Examples of solving the posed problem are given.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Na730ff3adb74420d8a8650197b8910ec
17 Nfc591d959f654da38c5fe43c45a23785
18 sg:journal.1136025
19 schema:name Identification of the Thermal Conductivity Coefficient Using a Given Surface Heat Flux
20 schema:pagination 2031-2042
21 schema:productId N07cccac7aa6e438ea034d2b1d3f04d1d
22 N9921fc14263c44e4b836b993c6e4d1f8
23 Ne9c1cb05f6be40c0a76b5b5749c6ebbf
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111953487
25 https://doi.org/10.1134/s0965542518120023
26 schema:sdDatePublished 2019-04-11T09:02
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N793d400241e04d44983586ec3d161f4c
29 schema:url https://link.springer.com/10.1134%2FS0965542518120023
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N07cccac7aa6e438ea034d2b1d3f04d1d schema:name doi
34 schema:value 10.1134/s0965542518120023
35 rdf:type schema:PropertyValue
36 N1e2fa3519cc74eedbf9c2c2316c7f072 rdf:first N7e6316cfa583451ea457880785b8a01a
37 rdf:rest N2c5001cb95c14b9ea07c566c665f3f89
38 N2c5001cb95c14b9ea07c566c665f3f89 rdf:first N4a74e9ca4bd44375aa681bf12705a04c
39 rdf:rest rdf:nil
40 N4a74e9ca4bd44375aa681bf12705a04c schema:affiliation https://www.grid.ac/institutes/grid.18763.3b
41 schema:familyName Zubov
42 schema:givenName V. I.
43 rdf:type schema:Person
44 N793d400241e04d44983586ec3d161f4c schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N7e6316cfa583451ea457880785b8a01a schema:affiliation https://www.grid.ac/institutes/grid.4886.2
47 schema:familyName Albu
48 schema:givenName A. F.
49 rdf:type schema:Person
50 N9921fc14263c44e4b836b993c6e4d1f8 schema:name readcube_id
51 schema:value 884c410276407071968bb39fad16c530c10ecf5f9d67fb00ddb8360df5da7429
52 rdf:type schema:PropertyValue
53 Na730ff3adb74420d8a8650197b8910ec schema:issueNumber 12
54 rdf:type schema:PublicationIssue
55 Ne9c1cb05f6be40c0a76b5b5749c6ebbf schema:name dimensions_id
56 schema:value pub.1111953487
57 rdf:type schema:PropertyValue
58 Nfc591d959f654da38c5fe43c45a23785 schema:volumeNumber 58
59 rdf:type schema:PublicationVolume
60 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
61 schema:name Engineering
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
64 schema:name Interdisciplinary Engineering
65 rdf:type schema:DefinedTerm
66 sg:grant.5341203 http://pending.schema.org/fundedItem sg:pub.10.1134/s0965542518120023
67 rdf:type schema:MonetaryGrant
68 sg:journal.1136025 schema:issn 0965-5425
69 1555-6662
70 schema:name Computational Mathematics and Mathematical Physics
71 rdf:type schema:Periodical
72 sg:pub.10.1007/978-3-319-69404-7_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092342718
73 https://doi.org/10.1007/978-3-319-69404-7_21
74 rdf:type schema:CreativeWork
75 sg:pub.10.1134/s0018151x09030183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024516043
76 https://doi.org/10.1134/s0018151x09030183
77 rdf:type schema:CreativeWork
78 sg:pub.10.1134/s0965542514120057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011990360
79 https://doi.org/10.1134/s0965542514120057
80 rdf:type schema:CreativeWork
81 sg:pub.10.1134/s0965542516100146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014364820
82 https://doi.org/10.1134/s0965542516100146
83 rdf:type schema:CreativeWork
84 sg:pub.10.1134/s0965542516110075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017763994
85 https://doi.org/10.1134/s0965542516110075
86 rdf:type schema:CreativeWork
87 sg:pub.10.1134/s0965542518100032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109764823
88 https://doi.org/10.1134/s0965542518100032
89 rdf:type schema:CreativeWork
90 https://www.grid.ac/institutes/grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology
91 schema:name Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, 119333, Moscow, Russia
92 Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow oblast, Russia
93 rdf:type schema:Organization
94 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
95 schema:name Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, 119333, Moscow, Russia
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...