Numerical Solution of Time-Dependent Problems with Different Time Scales View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

P. N. Vabishchevich, P. E. Zakharov

ABSTRACT

Problems for time-dependent equations in which processes are characterized by different time scales are studied. Parts of the equations describing fast and slow processes are distinguished. The basic features of such problems related to their approximation are taken into account using finer time grids for fast processes. The construction and analysis of inhomogeneous time approximations is based on the theory of additive operator–difference schemes (splitting schemes). To solve time-dependent problems with different time scales, componentwise splitting schemes and vector additive schemes are used. The capabilities of the proposed schemes are illustrated by numerical examples for the time-dependent convection–diffusion problem. If convection is dominant, the convective transfer is computed on a finer time grid. More... »

PAGES

1552-1561

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965542518100123

DOI

http://dx.doi.org/10.1134/s0965542518100123

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109764817


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "North-Eastern Federal University", 
          "id": "https://www.grid.ac/institutes/grid.440700.7", 
          "name": [
            "Nuclear Safety Institute, Russian Academy of Sciences, 115191, Moscow, Russia", 
            "Ammosov North-Eastern Federal University, 677000, Yakutsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vabishchevich", 
        "givenName": "P. N.", 
        "id": "sg:person.016121513150.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016121513150.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North-Eastern Federal University", 
          "id": "https://www.grid.ac/institutes/grid.440700.7", 
          "name": [
            "Ammosov North-Eastern Federal University, 677000, Yakutsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zakharov", 
        "givenName": "P. E.", 
        "id": "sg:person.010276045767.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010276045767.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1015838567", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-71584-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015838567", 
          "https://doi.org/10.1007/978-3-540-71584-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-71584-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015838567", 
          "https://doi.org/10.1007/978-3-540-71584-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-53224-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021596892", 
          "https://doi.org/10.1007/978-3-662-53224-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-15117-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023838191", 
          "https://doi.org/10.1007/978-3-319-15117-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-15117-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023838191", 
          "https://doi.org/10.1007/978-3-319-15117-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1033757497", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-9874-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033757497", 
          "https://doi.org/10.1007/978-94-015-9874-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-9874-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033757497", 
          "https://doi.org/10.1007/978-94-015-9874-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-05-01745-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035721851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780203908518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038101734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-23099-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044619823", 
          "https://doi.org/10.1007/978-3-642-23099-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-23099-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044619823", 
          "https://doi.org/10.1007/978-3-642-23099-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-12316-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044799678", 
          "https://doi.org/10.1007/978-3-319-12316-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-12316-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044799678", 
          "https://doi.org/10.1007/978-3-319-12316-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0962492900002257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054905144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0962492912000025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054905287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/1748-3018.9.1.65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064585028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/1748-3018.9.1.65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064585028"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "Problems for time-dependent equations in which processes are characterized by different time scales are studied. Parts of the equations describing fast and slow processes are distinguished. The basic features of such problems related to their approximation are taken into account using finer time grids for fast processes. The construction and analysis of inhomogeneous time approximations is based on the theory of additive operator\u2013difference schemes (splitting schemes). To solve time-dependent problems with different time scales, componentwise splitting schemes and vector additive schemes are used. The capabilities of the proposed schemes are illustrated by numerical examples for the time-dependent convection\u2013diffusion problem. If convection is dominant, the convective transfer is computed on a finer time grid.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0965542518100123", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136025", 
        "issn": [
          "0965-5425", 
          "1555-6662"
        ], 
        "name": "Computational Mathematics and Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Numerical Solution of Time-Dependent Problems with Different Time Scales", 
    "pagination": "1552-1561", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5900644e4577d4b2d5546248ce243ae3288b0732a2e7dd9c091816819341d184"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965542518100123"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109764817"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965542518100123", 
      "https://app.dimensions.ai/details/publication/pub.1109764817"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000610.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0965542518100123"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965542518100123'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965542518100123'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965542518100123'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965542518100123'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965542518100123 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N798a849221ba4cadad1139d616610e21
4 schema:citation sg:pub.10.1007/978-3-319-12316-5
5 sg:pub.10.1007/978-3-319-15117-5
6 sg:pub.10.1007/978-3-540-71584-9
7 sg:pub.10.1007/978-3-642-23099-8
8 sg:pub.10.1007/978-3-662-53224-9
9 sg:pub.10.1007/978-94-015-9874-3
10 https://app.dimensions.ai/details/publication/pub.1015838567
11 https://app.dimensions.ai/details/publication/pub.1033757497
12 https://doi.org/10.1017/s0962492900002257
13 https://doi.org/10.1017/s0962492912000025
14 https://doi.org/10.1090/s0025-5718-05-01745-x
15 https://doi.org/10.1201/9780203908518
16 https://doi.org/10.1260/1748-3018.9.1.65
17 schema:datePublished 2018-10
18 schema:datePublishedReg 2018-10-01
19 schema:description Problems for time-dependent equations in which processes are characterized by different time scales are studied. Parts of the equations describing fast and slow processes are distinguished. The basic features of such problems related to their approximation are taken into account using finer time grids for fast processes. The construction and analysis of inhomogeneous time approximations is based on the theory of additive operator–difference schemes (splitting schemes). To solve time-dependent problems with different time scales, componentwise splitting schemes and vector additive schemes are used. The capabilities of the proposed schemes are illustrated by numerical examples for the time-dependent convection–diffusion problem. If convection is dominant, the convective transfer is computed on a finer time grid.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N81c4c84a012f4812aeaa3dfae10b15ce
24 Nb19150ce65474425859522e9a6d920bb
25 sg:journal.1136025
26 schema:name Numerical Solution of Time-Dependent Problems with Different Time Scales
27 schema:pagination 1552-1561
28 schema:productId N95b17c74d8c7484aa11fba0e5e6afadb
29 N962f9c15c1c74d0f8dc1ce0eacadbb2f
30 Ne8dade1de96e48bab5f4d9585f0249b3
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109764817
32 https://doi.org/10.1134/s0965542518100123
33 schema:sdDatePublished 2019-04-10T21:00
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N336926313467404883324c3cba8bf53e
36 schema:url https://link.springer.com/10.1134%2FS0965542518100123
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N1d334eb9ba874c6d8f67a88071bfd07f rdf:first sg:person.010276045767.52
41 rdf:rest rdf:nil
42 N336926313467404883324c3cba8bf53e schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N798a849221ba4cadad1139d616610e21 rdf:first sg:person.016121513150.60
45 rdf:rest N1d334eb9ba874c6d8f67a88071bfd07f
46 N81c4c84a012f4812aeaa3dfae10b15ce schema:volumeNumber 58
47 rdf:type schema:PublicationVolume
48 N95b17c74d8c7484aa11fba0e5e6afadb schema:name readcube_id
49 schema:value 5900644e4577d4b2d5546248ce243ae3288b0732a2e7dd9c091816819341d184
50 rdf:type schema:PropertyValue
51 N962f9c15c1c74d0f8dc1ce0eacadbb2f schema:name dimensions_id
52 schema:value pub.1109764817
53 rdf:type schema:PropertyValue
54 Nb19150ce65474425859522e9a6d920bb schema:issueNumber 10
55 rdf:type schema:PublicationIssue
56 Ne8dade1de96e48bab5f4d9585f0249b3 schema:name doi
57 schema:value 10.1134/s0965542518100123
58 rdf:type schema:PropertyValue
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
63 schema:name Pure Mathematics
64 rdf:type schema:DefinedTerm
65 sg:journal.1136025 schema:issn 0965-5425
66 1555-6662
67 schema:name Computational Mathematics and Mathematical Physics
68 rdf:type schema:Periodical
69 sg:person.010276045767.52 schema:affiliation https://www.grid.ac/institutes/grid.440700.7
70 schema:familyName Zakharov
71 schema:givenName P. E.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010276045767.52
73 rdf:type schema:Person
74 sg:person.016121513150.60 schema:affiliation https://www.grid.ac/institutes/grid.440700.7
75 schema:familyName Vabishchevich
76 schema:givenName P. N.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016121513150.60
78 rdf:type schema:Person
79 sg:pub.10.1007/978-3-319-12316-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044799678
80 https://doi.org/10.1007/978-3-319-12316-5
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/978-3-319-15117-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023838191
83 https://doi.org/10.1007/978-3-319-15117-5
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/978-3-540-71584-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015838567
86 https://doi.org/10.1007/978-3-540-71584-9
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/978-3-642-23099-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044619823
89 https://doi.org/10.1007/978-3-642-23099-8
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/978-3-662-53224-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021596892
92 https://doi.org/10.1007/978-3-662-53224-9
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/978-94-015-9874-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033757497
95 https://doi.org/10.1007/978-94-015-9874-3
96 rdf:type schema:CreativeWork
97 https://app.dimensions.ai/details/publication/pub.1015838567 schema:CreativeWork
98 https://app.dimensions.ai/details/publication/pub.1033757497 schema:CreativeWork
99 https://doi.org/10.1017/s0962492900002257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054905144
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1017/s0962492912000025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054905287
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1090/s0025-5718-05-01745-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035721851
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1201/9780203908518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038101734
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1260/1748-3018.9.1.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064585028
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.440700.7 schema:alternateName North-Eastern Federal University
110 schema:name Ammosov North-Eastern Federal University, 677000, Yakutsk, Russia
111 Nuclear Safety Institute, Russian Academy of Sciences, 115191, Moscow, Russia
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...