Numerical simulation of the distribution of charge carrier in nanosized semiconductor heterostructures with account for polarization effects View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-01

AUTHORS

K. K. Abgaryan, D. L. Reviznikov

ABSTRACT

A three-level scheme for modeling nanosized semiconductor heterostructures with account for spontaneous and piezoelectric polarization effects is presented. The scheme combines quantummechanical calculations at the atomic level for obtaining the charge density on heterointerfaces, calculation of the distribution of carriers in the heterostructure based on the solution to the Schrödinger and Poisson equations, and the calculation of electron mobility in the two-dimensional electron gas with account for various scattering mechanisms. To speed up the computations of electron density in the heterostructure, the approach based on the approximation of the nonlinear dependence of the electron density on the potential in combination with the linearization of the Poisson equation is used. The efficiency of this approach in problems of the class in question is demonstrated. More... »

PAGES

161-172

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965542516010048

DOI

http://dx.doi.org/10.1134/s0965542516010048

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026106725


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, 119333, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, 119333, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abgaryan", 
        "givenName": "K. K.", 
        "id": "sg:person.010114525753.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010114525753.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Aviation Institute, National Research University, Volokolamskoe shosse 4, 125993, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77852.3f", 
          "name": [
            "Moscow Aviation Institute, National Research University, Volokolamskoe shosse 4, 125993, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reviznikov", 
        "givenName": "D. L.", 
        "id": "sg:person.012706722351.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012706722351.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s106378261312018x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026543693", 
          "https://doi.org/10.1134/s106378261312018x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782613010181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044444960", 
          "https://doi.org/10.1134/s1063782613010181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542509080156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009948926", 
          "https://doi.org/10.1134/s0965542509080156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782606100149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005568557", 
          "https://doi.org/10.1134/s1063782606100149"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-01", 
    "datePublishedReg": "2016-01-01", 
    "description": "A three-level scheme for modeling nanosized semiconductor heterostructures with account for spontaneous and piezoelectric polarization effects is presented. The scheme combines quantummechanical calculations at the atomic level for obtaining the charge density on heterointerfaces, calculation of the distribution of carriers in the heterostructure based on the solution to the Schr\u00f6dinger and Poisson equations, and the calculation of electron mobility in the two-dimensional electron gas with account for various scattering mechanisms. To speed up the computations of electron density in the heterostructure, the approach based on the approximation of the nonlinear dependence of the electron density on the potential in combination with the linearization of the Poisson equation is used. The efficiency of this approach in problems of the class in question is demonstrated.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0965542516010048", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136025", 
        "issn": [
          "0044-4669", 
          "0965-5425"
        ], 
        "name": "Computational Mathematics and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "keywords": [
      "semiconductor heterostructures", 
      "piezoelectric polarization effects", 
      "Poisson equation", 
      "numerical simulations", 
      "electron mobility", 
      "distribution of carriers", 
      "heterostructures", 
      "two-dimensional electron gas", 
      "charge carriers", 
      "polarization effects", 
      "charge density", 
      "nonlinear dependence", 
      "scattering mechanism", 
      "density", 
      "electron gas", 
      "heterointerface", 
      "equations", 
      "gas", 
      "simulations", 
      "quantummechanical calculations", 
      "calculations", 
      "atomic level", 
      "carriers", 
      "efficiency", 
      "three-level scheme", 
      "linearization", 
      "distribution", 
      "electron density", 
      "account", 
      "scheme", 
      "solution", 
      "effect", 
      "mobility", 
      "dependence", 
      "approach", 
      "computation", 
      "approximation", 
      "combination", 
      "problem", 
      "potential", 
      "mechanism", 
      "Schr\u00f6dinger", 
      "class", 
      "levels", 
      "questions"
    ], 
    "name": "Numerical simulation of the distribution of charge carrier in nanosized semiconductor heterostructures with account for polarization effects", 
    "pagination": "161-172", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026106725"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965542516010048"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965542516010048", 
      "https://app.dimensions.ai/details/publication/pub.1026106725"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_688.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0965542516010048"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965542516010048'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965542516010048'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965542516010048'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965542516010048'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      22 PREDICATES      77 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965542516010048 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 anzsrc-for:0105
5 schema:author Nd439dc0d469548fd95fc05ca43edb547
6 schema:citation sg:pub.10.1134/s0965542509080156
7 sg:pub.10.1134/s1063782606100149
8 sg:pub.10.1134/s1063782613010181
9 sg:pub.10.1134/s106378261312018x
10 schema:datePublished 2016-01
11 schema:datePublishedReg 2016-01-01
12 schema:description A three-level scheme for modeling nanosized semiconductor heterostructures with account for spontaneous and piezoelectric polarization effects is presented. The scheme combines quantummechanical calculations at the atomic level for obtaining the charge density on heterointerfaces, calculation of the distribution of carriers in the heterostructure based on the solution to the Schrödinger and Poisson equations, and the calculation of electron mobility in the two-dimensional electron gas with account for various scattering mechanisms. To speed up the computations of electron density in the heterostructure, the approach based on the approximation of the nonlinear dependence of the electron density on the potential in combination with the linearization of the Poisson equation is used. The efficiency of this approach in problems of the class in question is demonstrated.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N30c6660f4fec4516a93b6bcca87951d8
17 Nb174d48dec784047bafb60e9e3d2d08a
18 sg:journal.1136025
19 schema:keywords Poisson equation
20 Schrödinger
21 account
22 approach
23 approximation
24 atomic level
25 calculations
26 carriers
27 charge carriers
28 charge density
29 class
30 combination
31 computation
32 density
33 dependence
34 distribution
35 distribution of carriers
36 effect
37 efficiency
38 electron density
39 electron gas
40 electron mobility
41 equations
42 gas
43 heterointerface
44 heterostructures
45 levels
46 linearization
47 mechanism
48 mobility
49 nonlinear dependence
50 numerical simulations
51 piezoelectric polarization effects
52 polarization effects
53 potential
54 problem
55 quantummechanical calculations
56 questions
57 scattering mechanism
58 scheme
59 semiconductor heterostructures
60 simulations
61 solution
62 three-level scheme
63 two-dimensional electron gas
64 schema:name Numerical simulation of the distribution of charge carrier in nanosized semiconductor heterostructures with account for polarization effects
65 schema:pagination 161-172
66 schema:productId N155a976843084d298651101a2cf83e47
67 N978976e527524c6cb749593e05b9cd55
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026106725
69 https://doi.org/10.1134/s0965542516010048
70 schema:sdDatePublished 2021-12-01T19:35
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N493e5a4fb10f4099b6fad312ae6bf713
73 schema:url https://doi.org/10.1134/s0965542516010048
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N155a976843084d298651101a2cf83e47 schema:name dimensions_id
78 schema:value pub.1026106725
79 rdf:type schema:PropertyValue
80 N30c6660f4fec4516a93b6bcca87951d8 schema:issueNumber 1
81 rdf:type schema:PublicationIssue
82 N493e5a4fb10f4099b6fad312ae6bf713 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N978976e527524c6cb749593e05b9cd55 schema:name doi
85 schema:value 10.1134/s0965542516010048
86 rdf:type schema:PropertyValue
87 Nb174d48dec784047bafb60e9e3d2d08a schema:volumeNumber 56
88 rdf:type schema:PublicationVolume
89 Nd439dc0d469548fd95fc05ca43edb547 rdf:first sg:person.010114525753.47
90 rdf:rest Nda2c0e98662c4706bd19552834af2c10
91 Nda2c0e98662c4706bd19552834af2c10 rdf:first sg:person.012706722351.28
92 rdf:rest rdf:nil
93 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
94 schema:name Mathematical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
97 schema:name Applied Mathematics
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
100 schema:name Numerical and Computational Mathematics
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
103 schema:name Mathematical Physics
104 rdf:type schema:DefinedTerm
105 sg:journal.1136025 schema:issn 0044-4669
106 0965-5425
107 schema:name Computational Mathematics and Mathematical Physics
108 schema:publisher Pleiades Publishing
109 rdf:type schema:Periodical
110 sg:person.010114525753.47 schema:affiliation grid-institutes:grid.4886.2
111 schema:familyName Abgaryan
112 schema:givenName K. K.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010114525753.47
114 rdf:type schema:Person
115 sg:person.012706722351.28 schema:affiliation grid-institutes:grid.77852.3f
116 schema:familyName Reviznikov
117 schema:givenName D. L.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012706722351.28
119 rdf:type schema:Person
120 sg:pub.10.1134/s0965542509080156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009948926
121 https://doi.org/10.1134/s0965542509080156
122 rdf:type schema:CreativeWork
123 sg:pub.10.1134/s1063782606100149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005568557
124 https://doi.org/10.1134/s1063782606100149
125 rdf:type schema:CreativeWork
126 sg:pub.10.1134/s1063782613010181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044444960
127 https://doi.org/10.1134/s1063782613010181
128 rdf:type schema:CreativeWork
129 sg:pub.10.1134/s106378261312018x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026543693
130 https://doi.org/10.1134/s106378261312018x
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.4886.2 schema:alternateName Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, 119333, Moscow, Russia
133 schema:name Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, 119333, Moscow, Russia
134 rdf:type schema:Organization
135 grid-institutes:grid.77852.3f schema:alternateName Moscow Aviation Institute, National Research University, Volokolamskoe shosse 4, 125993, Moscow, Russia
136 schema:name Moscow Aviation Institute, National Research University, Volokolamskoe shosse 4, 125993, Moscow, Russia
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...