Discrete autowaves in neural systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-05

AUTHORS

S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov

ABSTRACT

A singularly perturbed scalar nonlinear differential-difference equation with two delays is considered that is a mathematical model of an isolated neuron. It is shown that a one-dimensional chain of diffusively coupled oscillators of this type exhibits the well-known buffer phenomenon. Specifically, as the number of chain links increases consistently with decreasing diffusivity, the number of coexisting stable periodic motions in the chain grows indefinitely. More... »

PAGES

702-719

References to SciGraph publications

  • 2011-12. Relaxation self-oscillations in neuron systems: II in DIFFERENTIAL EQUATIONS
  • 2011-07. Relaxation self-oscillations in neuron systems: I in DIFFERENTIAL EQUATIONS
  • 2010-12. A modification of Hutchinson’s equation in COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0965542512050090

    DOI

    http://dx.doi.org/10.1134/s0965542512050090

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035216242


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Yaroslavl State University", 
              "id": "https://www.grid.ac/institutes/grid.99921.3a", 
              "name": [
                "Faculty of Mathematics, Yaroslavl State University, ul. Sovetskaya 14, 150000, Yaroslavl, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glyzin", 
            "givenName": "S. D.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yaroslavl State University", 
              "id": "https://www.grid.ac/institutes/grid.99921.3a", 
              "name": [
                "Faculty of Mathematics, Yaroslavl State University, ul. Sovetskaya 14, 150000, Yaroslavl, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kolesov", 
            "givenName": "A. Yu.", 
            "id": "sg:person.010035647473.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010035647473.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Faculty of Mechanics and Mathematics, Moscow State University, 119992, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rozov", 
            "givenName": "N. Kh.", 
            "id": "sg:person.016037077631.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037077631.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s0012266111120019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009430572", 
              "https://doi.org/10.1134/s0012266111120019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965542510120031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019214202", 
              "https://doi.org/10.1134/s0965542510120031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0012266111070020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020633032", 
              "https://doi.org/10.1134/s0012266111070020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(85)83926-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040760897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.78.1213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.78.1213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0146017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062840427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218127400000840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062953366"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-05", 
        "datePublishedReg": "2012-05-01", 
        "description": "A singularly perturbed scalar nonlinear differential-difference equation with two delays is considered that is a mathematical model of an isolated neuron. It is shown that a one-dimensional chain of diffusively coupled oscillators of this type exhibits the well-known buffer phenomenon. Specifically, as the number of chain links increases consistently with decreasing diffusivity, the number of coexisting stable periodic motions in the chain grows indefinitely.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s0965542512050090", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136025", 
            "issn": [
              "0965-5425", 
              "1555-6662"
            ], 
            "name": "Computational Mathematics and Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "52"
          }
        ], 
        "name": "Discrete autowaves in neural systems", 
        "pagination": "702-719", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a7c125cbca37aa2d3640b4d8d7219c44182cfe3ecb5cf4a224b163ff7effea47"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0965542512050090"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035216242"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0965542512050090", 
          "https://app.dimensions.ai/details/publication/pub.1035216242"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000506.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134/S0965542512050090"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965542512050090'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965542512050090'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965542512050090'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965542512050090'


     

    This table displays all metadata directly associated to this object as RDF triples.

    101 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0965542512050090 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Nee5cd52c53f44d8586a8b88840b96b25
    4 schema:citation sg:pub.10.1134/s0012266111070020
    5 sg:pub.10.1134/s0012266111120019
    6 sg:pub.10.1134/s0965542510120031
    7 https://doi.org/10.1016/s0006-3495(85)83926-6
    8 https://doi.org/10.1103/revmodphys.78.1213
    9 https://doi.org/10.1137/0146017
    10 https://doi.org/10.1142/s0218127400000840
    11 schema:datePublished 2012-05
    12 schema:datePublishedReg 2012-05-01
    13 schema:description A singularly perturbed scalar nonlinear differential-difference equation with two delays is considered that is a mathematical model of an isolated neuron. It is shown that a one-dimensional chain of diffusively coupled oscillators of this type exhibits the well-known buffer phenomenon. Specifically, as the number of chain links increases consistently with decreasing diffusivity, the number of coexisting stable periodic motions in the chain grows indefinitely.
    14 schema:genre research_article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N0db605aaa6ce484b8450aca524797491
    18 N7e6ba254c5a1469da931dc2875e0c580
    19 sg:journal.1136025
    20 schema:name Discrete autowaves in neural systems
    21 schema:pagination 702-719
    22 schema:productId N26ccf15bf44a4db591083b51ea399834
    23 N332abef863b643cba6ed87e5f6de77f4
    24 Ne81c0d68a8dd40d2939ac80c6d96a1a8
    25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035216242
    26 https://doi.org/10.1134/s0965542512050090
    27 schema:sdDatePublished 2019-04-10T15:50
    28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    29 schema:sdPublisher Nbcc666c64948433e9c36ec8cefa6aba7
    30 schema:url http://link.springer.com/10.1134/S0965542512050090
    31 sgo:license sg:explorer/license/
    32 sgo:sdDataset articles
    33 rdf:type schema:ScholarlyArticle
    34 N005735a571c643d3bff5770dd26d88bc rdf:first sg:person.016037077631.01
    35 rdf:rest rdf:nil
    36 N0db605aaa6ce484b8450aca524797491 schema:volumeNumber 52
    37 rdf:type schema:PublicationVolume
    38 N26ccf15bf44a4db591083b51ea399834 schema:name readcube_id
    39 schema:value a7c125cbca37aa2d3640b4d8d7219c44182cfe3ecb5cf4a224b163ff7effea47
    40 rdf:type schema:PropertyValue
    41 N332abef863b643cba6ed87e5f6de77f4 schema:name doi
    42 schema:value 10.1134/s0965542512050090
    43 rdf:type schema:PropertyValue
    44 N7e6ba254c5a1469da931dc2875e0c580 schema:issueNumber 5
    45 rdf:type schema:PublicationIssue
    46 N88305f780053495a9e2cb9e9c9217aab schema:affiliation https://www.grid.ac/institutes/grid.99921.3a
    47 schema:familyName Glyzin
    48 schema:givenName S. D.
    49 rdf:type schema:Person
    50 Nb9e37aad528e462fb3e27ded5fccb377 rdf:first sg:person.010035647473.20
    51 rdf:rest N005735a571c643d3bff5770dd26d88bc
    52 Nbcc666c64948433e9c36ec8cefa6aba7 schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 Ne81c0d68a8dd40d2939ac80c6d96a1a8 schema:name dimensions_id
    55 schema:value pub.1035216242
    56 rdf:type schema:PropertyValue
    57 Nee5cd52c53f44d8586a8b88840b96b25 rdf:first N88305f780053495a9e2cb9e9c9217aab
    58 rdf:rest Nb9e37aad528e462fb3e27ded5fccb377
    59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Mathematical Sciences
    61 rdf:type schema:DefinedTerm
    62 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Applied Mathematics
    64 rdf:type schema:DefinedTerm
    65 sg:journal.1136025 schema:issn 0965-5425
    66 1555-6662
    67 schema:name Computational Mathematics and Mathematical Physics
    68 rdf:type schema:Periodical
    69 sg:person.010035647473.20 schema:affiliation https://www.grid.ac/institutes/grid.99921.3a
    70 schema:familyName Kolesov
    71 schema:givenName A. Yu.
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010035647473.20
    73 rdf:type schema:Person
    74 sg:person.016037077631.01 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    75 schema:familyName Rozov
    76 schema:givenName N. Kh.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037077631.01
    78 rdf:type schema:Person
    79 sg:pub.10.1134/s0012266111070020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020633032
    80 https://doi.org/10.1134/s0012266111070020
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1134/s0012266111120019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009430572
    83 https://doi.org/10.1134/s0012266111120019
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1134/s0965542510120031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019214202
    86 https://doi.org/10.1134/s0965542510120031
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1016/s0006-3495(85)83926-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040760897
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1103/revmodphys.78.1213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839608
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1137/0146017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840427
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1142/s0218127400000840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062953366
    95 rdf:type schema:CreativeWork
    96 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
    97 schema:name Faculty of Mechanics and Mathematics, Moscow State University, 119992, Moscow, Russia
    98 rdf:type schema:Organization
    99 https://www.grid.ac/institutes/grid.99921.3a schema:alternateName Yaroslavl State University
    100 schema:name Faculty of Mathematics, Yaroslavl State University, ul. Sovetskaya 14, 150000, Yaroslavl, Russia
    101 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...