One-velocity model of a heterogeneous medium with a hyperbolic adiabatic kernel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-06-22

AUTHORS

V. S. Surov

ABSTRACT

The one-velocity model equations for a heterogeneous medium are presented that take into account the internal forces of interfractional interactions and heat and mass exchange. The shock adiabat obtained for the mixture agrees with the one-velocity model equations. For one-dimensional unsteady adiabatic flows, the characteristic equations are found and relations along characteristic directions are determined. It is shown that the model equations with allowance for interfractional interaction forces are hyperbolic. Several finite-difference and finite-volume schemes designed for integrating the model equations are discussed. More... »

PAGES

1048-1062

References to SciGraph publications

  • 2006-09. Shock adiabat of a one-velocity heterogeneous medium in JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS
  • 2004-09. Galilean-Invariant and Thermodynamically Consistent Model of a Composite Isotropic Medium in JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS
  • 2007-11. Certain self-similar problems of flow of a one-velocity heterogeneous medium in JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0965542508060146

    DOI

    http://dx.doi.org/10.1134/s0965542508060146

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046591011


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Chelyabinsk State University, ul. Brat\u2019ev Kashirinykh 129, 454021, Chelyabinsk, Russia", 
              "id": "http://www.grid.ac/institutes/grid.77728.3d", 
              "name": [
                "Chelyabinsk State University, ul. Brat\u2019ev Kashirinykh 129, 454021, Chelyabinsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Surov", 
            "givenName": "V. S.", 
            "id": "sg:person.014734475413.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014734475413.42"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10891-007-0160-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019268934", 
              "https://doi.org/10.1007/s10891-007-0160-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:jamt.0000037958.14504.01", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007060380", 
              "https://doi.org/10.1023/b:jamt.0000037958.14504.01"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10891-006-0179-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031427748", 
              "https://doi.org/10.1007/s10891-006-0179-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-06-22", 
        "datePublishedReg": "2008-06-22", 
        "description": "The one-velocity model equations for a heterogeneous medium are presented that take into account the internal forces of interfractional interactions and heat and mass exchange. The shock adiabat obtained for the mixture agrees with the one-velocity model equations. For one-dimensional unsteady adiabatic flows, the characteristic equations are found and relations along characteristic directions are determined. It is shown that the model equations with allowance for interfractional interaction forces are hyperbolic. Several finite-difference and finite-volume schemes designed for integrating the model equations are discussed.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s0965542508060146", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136025", 
            "issn": [
              "0965-5425", 
              "1555-6662"
            ], 
            "name": "Computational Mathematics and Mathematical Physics", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "48"
          }
        ], 
        "keywords": [
          "model equations", 
          "heterogeneous media", 
          "one-dimensional unsteady adiabatic flow", 
          "one-velocity model", 
          "finite volume scheme", 
          "interfractional interaction", 
          "characteristic equation", 
          "equations", 
          "adiabatic flow", 
          "characteristic directions", 
          "shock adiabat", 
          "internal forces", 
          "interaction forces", 
          "mass exchange", 
          "kernel", 
          "scheme", 
          "force", 
          "flow", 
          "model", 
          "adiabat", 
          "account", 
          "direction", 
          "allowance", 
          "medium", 
          "heat", 
          "relation", 
          "interaction", 
          "exchange", 
          "mixture"
        ], 
        "name": "One-velocity model of a heterogeneous medium with a hyperbolic adiabatic kernel", 
        "pagination": "1048-1062", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046591011"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0965542508060146"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0965542508060146", 
          "https://app.dimensions.ai/details/publication/pub.1046591011"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_462.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s0965542508060146"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965542508060146'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965542508060146'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965542508060146'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965542508060146'


     

    This table displays all metadata directly associated to this object as RDF triples.

    106 TRIPLES      21 PREDICATES      58 URIs      45 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0965542508060146 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 anzsrc-for:0103
    4 anzsrc-for:0105
    5 schema:author Nb65d8f0e3e15466989bb629476bc4762
    6 schema:citation sg:pub.10.1007/s10891-006-0179-x
    7 sg:pub.10.1007/s10891-007-0160-3
    8 sg:pub.10.1023/b:jamt.0000037958.14504.01
    9 schema:datePublished 2008-06-22
    10 schema:datePublishedReg 2008-06-22
    11 schema:description The one-velocity model equations for a heterogeneous medium are presented that take into account the internal forces of interfractional interactions and heat and mass exchange. The shock adiabat obtained for the mixture agrees with the one-velocity model equations. For one-dimensional unsteady adiabatic flows, the characteristic equations are found and relations along characteristic directions are determined. It is shown that the model equations with allowance for interfractional interaction forces are hyperbolic. Several finite-difference and finite-volume schemes designed for integrating the model equations are discussed.
    12 schema:genre article
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N235de22d51174de487b3ef5cf6480369
    15 N592c59b350fd4bc58ee84deda87eb6f9
    16 sg:journal.1136025
    17 schema:keywords account
    18 adiabat
    19 adiabatic flow
    20 allowance
    21 characteristic directions
    22 characteristic equation
    23 direction
    24 equations
    25 exchange
    26 finite volume scheme
    27 flow
    28 force
    29 heat
    30 heterogeneous media
    31 interaction
    32 interaction forces
    33 interfractional interaction
    34 internal forces
    35 kernel
    36 mass exchange
    37 medium
    38 mixture
    39 model
    40 model equations
    41 one-dimensional unsteady adiabatic flow
    42 one-velocity model
    43 relation
    44 scheme
    45 shock adiabat
    46 schema:name One-velocity model of a heterogeneous medium with a hyperbolic adiabatic kernel
    47 schema:pagination 1048-1062
    48 schema:productId N1d96c80fa01f488bbd794dc0d7d0920f
    49 N5b91a78831054aa193b10027998a2205
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046591011
    51 https://doi.org/10.1134/s0965542508060146
    52 schema:sdDatePublished 2022-09-02T15:52
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher N6bc17a228d2746ada925b2cba1c869ea
    55 schema:url https://doi.org/10.1134/s0965542508060146
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N1d96c80fa01f488bbd794dc0d7d0920f schema:name dimensions_id
    60 schema:value pub.1046591011
    61 rdf:type schema:PropertyValue
    62 N235de22d51174de487b3ef5cf6480369 schema:volumeNumber 48
    63 rdf:type schema:PublicationVolume
    64 N592c59b350fd4bc58ee84deda87eb6f9 schema:issueNumber 6
    65 rdf:type schema:PublicationIssue
    66 N5b91a78831054aa193b10027998a2205 schema:name doi
    67 schema:value 10.1134/s0965542508060146
    68 rdf:type schema:PropertyValue
    69 N6bc17a228d2746ada925b2cba1c869ea schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 Nb65d8f0e3e15466989bb629476bc4762 rdf:first sg:person.014734475413.42
    72 rdf:rest rdf:nil
    73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Mathematical Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Applied Mathematics
    78 rdf:type schema:DefinedTerm
    79 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Numerical and Computational Mathematics
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Mathematical Physics
    84 rdf:type schema:DefinedTerm
    85 sg:journal.1136025 schema:issn 0965-5425
    86 1555-6662
    87 schema:name Computational Mathematics and Mathematical Physics
    88 schema:publisher Pleiades Publishing
    89 rdf:type schema:Periodical
    90 sg:person.014734475413.42 schema:affiliation grid-institutes:grid.77728.3d
    91 schema:familyName Surov
    92 schema:givenName V. S.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014734475413.42
    94 rdf:type schema:Person
    95 sg:pub.10.1007/s10891-006-0179-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031427748
    96 https://doi.org/10.1007/s10891-006-0179-x
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/s10891-007-0160-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019268934
    99 https://doi.org/10.1007/s10891-007-0160-3
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1023/b:jamt.0000037958.14504.01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007060380
    102 https://doi.org/10.1023/b:jamt.0000037958.14504.01
    103 rdf:type schema:CreativeWork
    104 grid-institutes:grid.77728.3d schema:alternateName Chelyabinsk State University, ul. Brat’ev Kashirinykh 129, 454021, Chelyabinsk, Russia
    105 schema:name Chelyabinsk State University, ul. Brat’ev Kashirinykh 129, 454021, Chelyabinsk, Russia
    106 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...