Linear interval equations with symmetric solution sets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-04

AUTHORS

L. T. Ashchepkov

ABSTRACT

Criteria for symmetry and boundedness are found for the combined solution set of a system of linear algebraic equations with interval coefficients. It is shown that the problem of the best inner interval estimation of a symmetric solution set can be exactly solved by linear programming methods.

PAGES

531-538

References to SciGraph publications

Journal

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965542508040027

DOI

http://dx.doi.org/10.1134/s0965542508040027

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014241753


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Applied Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.465375.6", 
          "name": [
            "Institute of Applied Mathematics, Far East Division, Russian Academy of Sciences, ul. Radio 7, 690041, Vladivostok, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ashchepkov", 
        "givenName": "L. T.", 
        "id": "sg:person.015005573276.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015005573276.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01386090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008849116", 
          "https://doi.org/10.1007/bf01386090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(96)00681-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032766577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01213466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044313251", 
          "https://doi.org/10.1007/bf01213466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01213466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044313251", 
          "https://doi.org/10.1007/bf01213466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0895479893251198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062882056"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-04", 
    "datePublishedReg": "2008-04-01", 
    "description": "Criteria for symmetry and boundedness are found for the combined solution set of a system of linear algebraic equations with interval coefficients. It is shown that the problem of the best inner interval estimation of a symmetric solution set can be exactly solved by linear programming methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0965542508040027", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136025", 
        "issn": [
          "0965-5425", 
          "1555-6662"
        ], 
        "name": "Computational Mathematics and Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "name": "Linear interval equations with symmetric solution sets", 
    "pagination": "531-538", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "43d917b497607e76fadde4a69c6aa292ca6d10ad2b19ff76a112655bd8f62319"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965542508040027"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014241753"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965542508040027", 
      "https://app.dimensions.ai/details/publication/pub.1014241753"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0965542508040027"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965542508040027'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965542508040027'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965542508040027'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965542508040027'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      20 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965542508040027 schema:author N4dfa6aa5f544423fb8d0bde03411b66f
2 schema:citation sg:pub.10.1007/bf01213466
3 sg:pub.10.1007/bf01386090
4 https://doi.org/10.1016/s0024-3795(96)00681-7
5 https://doi.org/10.1137/s0895479893251198
6 schema:datePublished 2008-04
7 schema:datePublishedReg 2008-04-01
8 schema:description Criteria for symmetry and boundedness are found for the combined solution set of a system of linear algebraic equations with interval coefficients. It is shown that the problem of the best inner interval estimation of a symmetric solution set can be exactly solved by linear programming methods.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N101e28c239de45989aea703e4417599b
13 N60f4bec24f1b4dfc953ed7ed8477a4b9
14 sg:journal.1136025
15 schema:name Linear interval equations with symmetric solution sets
16 schema:pagination 531-538
17 schema:productId N617a687ac9ff49fc9546166166ba2495
18 N70641f5542264584ba2beb263fe55ff3
19 N9a3628bb53c64f8d8628bf3f64e36e79
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014241753
21 https://doi.org/10.1134/s0965542508040027
22 schema:sdDatePublished 2019-04-10T23:22
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N2e7eff51d84e45df81108ae0b589cd80
25 schema:url http://link.springer.com/10.1134/S0965542508040027
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N101e28c239de45989aea703e4417599b schema:volumeNumber 48
30 rdf:type schema:PublicationVolume
31 N2e7eff51d84e45df81108ae0b589cd80 schema:name Springer Nature - SN SciGraph project
32 rdf:type schema:Organization
33 N4dfa6aa5f544423fb8d0bde03411b66f rdf:first sg:person.015005573276.07
34 rdf:rest rdf:nil
35 N60f4bec24f1b4dfc953ed7ed8477a4b9 schema:issueNumber 4
36 rdf:type schema:PublicationIssue
37 N617a687ac9ff49fc9546166166ba2495 schema:name dimensions_id
38 schema:value pub.1014241753
39 rdf:type schema:PropertyValue
40 N70641f5542264584ba2beb263fe55ff3 schema:name readcube_id
41 schema:value 43d917b497607e76fadde4a69c6aa292ca6d10ad2b19ff76a112655bd8f62319
42 rdf:type schema:PropertyValue
43 N9a3628bb53c64f8d8628bf3f64e36e79 schema:name doi
44 schema:value 10.1134/s0965542508040027
45 rdf:type schema:PropertyValue
46 sg:journal.1136025 schema:issn 0965-5425
47 1555-6662
48 schema:name Computational Mathematics and Mathematical Physics
49 rdf:type schema:Periodical
50 sg:person.015005573276.07 schema:affiliation https://www.grid.ac/institutes/grid.465375.6
51 schema:familyName Ashchepkov
52 schema:givenName L. T.
53 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015005573276.07
54 rdf:type schema:Person
55 sg:pub.10.1007/bf01213466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044313251
56 https://doi.org/10.1007/bf01213466
57 rdf:type schema:CreativeWork
58 sg:pub.10.1007/bf01386090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008849116
59 https://doi.org/10.1007/bf01386090
60 rdf:type schema:CreativeWork
61 https://doi.org/10.1016/s0024-3795(96)00681-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032766577
62 rdf:type schema:CreativeWork
63 https://doi.org/10.1137/s0895479893251198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062882056
64 rdf:type schema:CreativeWork
65 https://www.grid.ac/institutes/grid.465375.6 schema:alternateName Institute of Applied Mathematics
66 schema:name Institute of Applied Mathematics, Far East Division, Russian Academy of Sciences, ul. Radio 7, 690041, Vladivostok, Russia
67 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...