Linear interval equations with symmetric solution sets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-04

AUTHORS

L. T. Ashchepkov

ABSTRACT

Criteria for symmetry and boundedness are found for the combined solution set of a system of linear algebraic equations with interval coefficients. It is shown that the problem of the best inner interval estimation of a symmetric solution set can be exactly solved by linear programming methods.

PAGES

531-538

Journal

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0965542508040027

DOI

http://dx.doi.org/10.1134/s0965542508040027

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014241753


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Applied Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.465375.6", 
          "name": [
            "Institute of Applied Mathematics, Far East Division, Russian Academy of Sciences, ul. Radio 7, 690041, Vladivostok, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ashchepkov", 
        "givenName": "L. T.", 
        "id": "sg:person.015005573276.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015005573276.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01386090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008849116", 
          "https://doi.org/10.1007/bf01386090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(96)00681-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032766577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01213466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044313251", 
          "https://doi.org/10.1007/bf01213466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01213466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044313251", 
          "https://doi.org/10.1007/bf01213466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0895479893251198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062882056"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-04", 
    "datePublishedReg": "2008-04-01", 
    "description": "Criteria for symmetry and boundedness are found for the combined solution set of a system of linear algebraic equations with interval coefficients. It is shown that the problem of the best inner interval estimation of a symmetric solution set can be exactly solved by linear programming methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0965542508040027", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136025", 
        "issn": [
          "0965-5425", 
          "1555-6662"
        ], 
        "name": "Computational Mathematics and Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "name": "Linear interval equations with symmetric solution sets", 
    "pagination": "531-538", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "43d917b497607e76fadde4a69c6aa292ca6d10ad2b19ff76a112655bd8f62319"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0965542508040027"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014241753"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0965542508040027", 
      "https://app.dimensions.ai/details/publication/pub.1014241753"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0965542508040027"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0965542508040027'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0965542508040027'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0965542508040027'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0965542508040027'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      20 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0965542508040027 schema:author N6cc21fee15be40348f6602b068ca6812
2 schema:citation sg:pub.10.1007/bf01213466
3 sg:pub.10.1007/bf01386090
4 https://doi.org/10.1016/s0024-3795(96)00681-7
5 https://doi.org/10.1137/s0895479893251198
6 schema:datePublished 2008-04
7 schema:datePublishedReg 2008-04-01
8 schema:description Criteria for symmetry and boundedness are found for the combined solution set of a system of linear algebraic equations with interval coefficients. It is shown that the problem of the best inner interval estimation of a symmetric solution set can be exactly solved by linear programming methods.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N9eb01cfb0a774bc891bd26a5d8f0180e
13 Nc2b30bf804cf457d9bcba6d58e7a9245
14 sg:journal.1136025
15 schema:name Linear interval equations with symmetric solution sets
16 schema:pagination 531-538
17 schema:productId N34c14e3071f84b94848db8aa0012c831
18 N4323afd94373448eb9c0c5a8957f5938
19 N97386b162b55481d92c84b2b4586210f
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014241753
21 https://doi.org/10.1134/s0965542508040027
22 schema:sdDatePublished 2019-04-10T23:22
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Ncf35756d15e4421b9cd8168433dc9fc4
25 schema:url http://link.springer.com/10.1134/S0965542508040027
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N34c14e3071f84b94848db8aa0012c831 schema:name dimensions_id
30 schema:value pub.1014241753
31 rdf:type schema:PropertyValue
32 N4323afd94373448eb9c0c5a8957f5938 schema:name readcube_id
33 schema:value 43d917b497607e76fadde4a69c6aa292ca6d10ad2b19ff76a112655bd8f62319
34 rdf:type schema:PropertyValue
35 N6cc21fee15be40348f6602b068ca6812 rdf:first sg:person.015005573276.07
36 rdf:rest rdf:nil
37 N97386b162b55481d92c84b2b4586210f schema:name doi
38 schema:value 10.1134/s0965542508040027
39 rdf:type schema:PropertyValue
40 N9eb01cfb0a774bc891bd26a5d8f0180e schema:volumeNumber 48
41 rdf:type schema:PublicationVolume
42 Nc2b30bf804cf457d9bcba6d58e7a9245 schema:issueNumber 4
43 rdf:type schema:PublicationIssue
44 Ncf35756d15e4421b9cd8168433dc9fc4 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 sg:journal.1136025 schema:issn 0965-5425
47 1555-6662
48 schema:name Computational Mathematics and Mathematical Physics
49 rdf:type schema:Periodical
50 sg:person.015005573276.07 schema:affiliation https://www.grid.ac/institutes/grid.465375.6
51 schema:familyName Ashchepkov
52 schema:givenName L. T.
53 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015005573276.07
54 rdf:type schema:Person
55 sg:pub.10.1007/bf01213466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044313251
56 https://doi.org/10.1007/bf01213466
57 rdf:type schema:CreativeWork
58 sg:pub.10.1007/bf01386090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008849116
59 https://doi.org/10.1007/bf01386090
60 rdf:type schema:CreativeWork
61 https://doi.org/10.1016/s0024-3795(96)00681-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032766577
62 rdf:type schema:CreativeWork
63 https://doi.org/10.1137/s0895479893251198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062882056
64 rdf:type schema:CreativeWork
65 https://www.grid.ac/institutes/grid.465375.6 schema:alternateName Institute of Applied Mathematics
66 schema:name Institute of Applied Mathematics, Far East Division, Russian Academy of Sciences, ul. Radio 7, 690041, Vladivostok, Russia
67 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...