The influence of pulsed CO2-laser radiation on the transport of powder during laser cladding of metal View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

D. V. Sergachev, O. B. Kovalev, G. N. Grachev, A. L. Smirnov, P. A. Pinaev

ABSTRACT

The problem of measurement of the in-flight velocity and temperature of particles in the light field of a pulsedperiodic laser was solved using contactless detection methods. The solution of the problem is based on using a spectrometer and a complex of laser and optical means. The diagnostic technique combines two independent methods for measuring the in-flight particle velocity: a passive one, based on the registration of the natural radiation emitted by the heated particles in the gas flow, and an active one, using the effect due to laser-beam scattering. Histograms of the statistical distributions of particle velocities for two operating modes of a coaxial nozzle were presented. There is no laser radiation in the first mode. There is pulsed laser radiation in the second mode. In the experiments, various powders (Al2O3, Mo, Ni, Al) with particle size distributions typical of laser deposition technology and various working gases (air, nitrogen, argon) were used. СО2-laser works in pulse-periodic mode with a mean power up to 2 kW. Pulsed power reaches several ten/hundred kilowatts. It is shown that in the field of laser radiation, powder particles acquire additional acceleration due to the evaporation and the appearance of a reactive force due to the recoil pressure of the vapors emitted from the irradiated part of the particle surface. It is shown that laser radiation can significantly affect the velocity and temperature of powder particles being transported by a gas jet. At the maximum carrier-gas velocity of up to 30 m/s, the velocities of single particles due to the laser-induced acceleration can reach the values of the order of 120 m/s. More... »

PAGES

897-908

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0869864318060100

DOI

http://dx.doi.org/10.1134/s0869864318060100

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112391335


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Theoretical and Applied Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.426168.f", 
          "name": [
            "Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sergachev", 
        "givenName": "D. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Theoretical and Applied Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.426168.f", 
          "name": [
            "Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kovalev", 
        "givenName": "O. B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Laser Physics", 
          "id": "https://www.grid.ac/institutes/grid.435275.2", 
          "name": [
            "Institute of Laser Physics SB RAS, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grachev", 
        "givenName": "G. N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Laser Physics", 
          "id": "https://www.grid.ac/institutes/grid.435275.2", 
          "name": [
            "Institute of Laser Physics SB RAS, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smirnov", 
        "givenName": "A. L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Laser Physics", 
          "id": "https://www.grid.ac/institutes/grid.435275.2", 
          "name": [
            "Institute of Laser Physics SB RAS, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinaev", 
        "givenName": "P. A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.optlaseng.2011.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005494849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-9340-1_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007539634", 
          "https://doi.org/10.1007/978-1-4020-9340-1_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-9340-1_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007539634", 
          "https://doi.org/10.1007/978-1-4020-9340-1_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0869864307020114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010397147", 
          "https://doi.org/10.1134/s0869864307020114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s086986431404012x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011775299", 
          "https://doi.org/10.1134/s086986431404012x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.phpro.2014.08.163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017977749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-33747-5_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020428672", 
          "https://doi.org/10.1007/978-3-642-33747-5_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.301242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021321375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.612531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024833056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.273390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027088753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.251167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030839633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11666-013-9940-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033131139", 
          "https://doi.org/10.1007/s11666-013-9940-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.236111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038488777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlastec.2011.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039380255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlastec.2008.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043295324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11666-011-9701-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045182079", 
          "https://doi.org/10.1007/s11666-011-9701-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.3.000008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065174391"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "The problem of measurement of the in-flight velocity and temperature of particles in the light field of a pulsedperiodic laser was solved using contactless detection methods. The solution of the problem is based on using a spectrometer and a complex of laser and optical means. The diagnostic technique combines two independent methods for measuring the in-flight particle velocity: a passive one, based on the registration of the natural radiation emitted by the heated particles in the gas flow, and an active one, using the effect due to laser-beam scattering. Histograms of the statistical distributions of particle velocities for two operating modes of a coaxial nozzle were presented. There is no laser radiation in the first mode. There is pulsed laser radiation in the second mode. In the experiments, various powders (Al2O3, Mo, Ni, Al) with particle size distributions typical of laser deposition technology and various working gases (air, nitrogen, argon) were used. \u0421\u041e2-laser works in pulse-periodic mode with a mean power up to 2 kW. Pulsed power reaches several ten/hundred kilowatts. It is shown that in the field of laser radiation, powder particles acquire additional acceleration due to the evaporation and the appearance of a reactive force due to the recoil pressure of the vapors emitted from the irradiated part of the particle surface. It is shown that laser radiation can significantly affect the velocity and temperature of powder particles being transported by a gas jet. At the maximum carrier-gas velocity of up to 30 m/s, the velocities of single particles due to the laser-induced acceleration can reach the values of the order of 120 m/s.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0869864318060100", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136319", 
        "issn": [
          "0869-8643", 
          "1531-8699"
        ], 
        "name": "Thermophysics and Aeromechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "The influence of pulsed CO2-laser radiation on the transport of powder during laser cladding of metal", 
    "pagination": "897-908", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "55397384d923b57ac9a47f5ead09c92f2ef9c170b0ee3359c8846fa935f4055f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0869864318060100"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112391335"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0869864318060100", 
      "https://app.dimensions.ai/details/publication/pub.1112391335"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89819_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0869864318060100"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0869864318060100'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0869864318060100'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0869864318060100'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0869864318060100'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0869864318060100 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nb9964eb391cf422bb461ea289d428966
4 schema:citation sg:pub.10.1007/978-1-4020-9340-1_8
5 sg:pub.10.1007/978-3-642-33747-5_10
6 sg:pub.10.1007/s11666-011-9701-6
7 sg:pub.10.1007/s11666-013-9940-9
8 sg:pub.10.1134/s0869864307020114
9 sg:pub.10.1134/s086986431404012x
10 https://doi.org/10.1016/j.optlaseng.2011.10.017
11 https://doi.org/10.1016/j.optlastec.2008.10.006
12 https://doi.org/10.1016/j.optlastec.2011.09.016
13 https://doi.org/10.1016/j.phpro.2014.08.163
14 https://doi.org/10.1117/12.236111
15 https://doi.org/10.1117/12.251167
16 https://doi.org/10.1117/12.273390
17 https://doi.org/10.1117/12.301242
18 https://doi.org/10.1117/12.612531
19 https://doi.org/10.1364/josab.3.000008
20 schema:datePublished 2018-11
21 schema:datePublishedReg 2018-11-01
22 schema:description The problem of measurement of the in-flight velocity and temperature of particles in the light field of a pulsedperiodic laser was solved using contactless detection methods. The solution of the problem is based on using a spectrometer and a complex of laser and optical means. The diagnostic technique combines two independent methods for measuring the in-flight particle velocity: a passive one, based on the registration of the natural radiation emitted by the heated particles in the gas flow, and an active one, using the effect due to laser-beam scattering. Histograms of the statistical distributions of particle velocities for two operating modes of a coaxial nozzle were presented. There is no laser radiation in the first mode. There is pulsed laser radiation in the second mode. In the experiments, various powders (Al2O3, Mo, Ni, Al) with particle size distributions typical of laser deposition technology and various working gases (air, nitrogen, argon) were used. СО2-laser works in pulse-periodic mode with a mean power up to 2 kW. Pulsed power reaches several ten/hundred kilowatts. It is shown that in the field of laser radiation, powder particles acquire additional acceleration due to the evaporation and the appearance of a reactive force due to the recoil pressure of the vapors emitted from the irradiated part of the particle surface. It is shown that laser radiation can significantly affect the velocity and temperature of powder particles being transported by a gas jet. At the maximum carrier-gas velocity of up to 30 m/s, the velocities of single particles due to the laser-induced acceleration can reach the values of the order of 120 m/s.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N049d56bba1f9440cb1e4289d7a4c31af
27 N8f0883d461ae4ba08f136e72efcf4867
28 sg:journal.1136319
29 schema:name The influence of pulsed CO2-laser radiation on the transport of powder during laser cladding of metal
30 schema:pagination 897-908
31 schema:productId N539e8875d5d04dc0bc813f64c2562bde
32 Nddfecd1ffd9f4b96ade75cbc270b3881
33 Nfa9b351588924f0b896dbca5ae42a8e9
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112391335
35 https://doi.org/10.1134/s0869864318060100
36 schema:sdDatePublished 2019-04-11T10:01
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N1def990b6f034322bed6ef2eb62491cc
39 schema:url https://link.springer.com/10.1134%2FS0869864318060100
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N049d56bba1f9440cb1e4289d7a4c31af schema:issueNumber 6
44 rdf:type schema:PublicationIssue
45 N1def990b6f034322bed6ef2eb62491cc schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N4df5234bf1684c7c9654d696052738c5 rdf:first Nb7ad5f312cc048158a31f4718dc7d7cb
48 rdf:rest Nb888587984ff4766a8c088097b6caa20
49 N539e8875d5d04dc0bc813f64c2562bde schema:name doi
50 schema:value 10.1134/s0869864318060100
51 rdf:type schema:PropertyValue
52 N62971f8a87364e02ac1b550eb7d2a335 schema:affiliation https://www.grid.ac/institutes/grid.435275.2
53 schema:familyName Pinaev
54 schema:givenName P. A.
55 rdf:type schema:Person
56 N89d0ebf53aab4a99a0cb257864ce3a37 schema:affiliation https://www.grid.ac/institutes/grid.426168.f
57 schema:familyName Sergachev
58 schema:givenName D. V.
59 rdf:type schema:Person
60 N8f0883d461ae4ba08f136e72efcf4867 schema:volumeNumber 25
61 rdf:type schema:PublicationVolume
62 Na3065f54c2b241edb24eeb13d9c91d50 rdf:first Nb7d1ca580ca640398cb8dc4f0845ed0b
63 rdf:rest Nb301191771574800a5646f408dc440e3
64 Nb301191771574800a5646f408dc440e3 rdf:first Nefe384b94c3c4515a17f6c725656b4de
65 rdf:rest N4df5234bf1684c7c9654d696052738c5
66 Nb7ad5f312cc048158a31f4718dc7d7cb schema:affiliation https://www.grid.ac/institutes/grid.435275.2
67 schema:familyName Smirnov
68 schema:givenName A. L.
69 rdf:type schema:Person
70 Nb7d1ca580ca640398cb8dc4f0845ed0b schema:affiliation https://www.grid.ac/institutes/grid.426168.f
71 schema:familyName Kovalev
72 schema:givenName O. B.
73 rdf:type schema:Person
74 Nb888587984ff4766a8c088097b6caa20 rdf:first N62971f8a87364e02ac1b550eb7d2a335
75 rdf:rest rdf:nil
76 Nb9964eb391cf422bb461ea289d428966 rdf:first N89d0ebf53aab4a99a0cb257864ce3a37
77 rdf:rest Na3065f54c2b241edb24eeb13d9c91d50
78 Nddfecd1ffd9f4b96ade75cbc270b3881 schema:name readcube_id
79 schema:value 55397384d923b57ac9a47f5ead09c92f2ef9c170b0ee3359c8846fa935f4055f
80 rdf:type schema:PropertyValue
81 Nefe384b94c3c4515a17f6c725656b4de schema:affiliation https://www.grid.ac/institutes/grid.435275.2
82 schema:familyName Grachev
83 schema:givenName G. N.
84 rdf:type schema:Person
85 Nfa9b351588924f0b896dbca5ae42a8e9 schema:name dimensions_id
86 schema:value pub.1112391335
87 rdf:type schema:PropertyValue
88 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
89 schema:name Physical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
92 schema:name Other Physical Sciences
93 rdf:type schema:DefinedTerm
94 sg:journal.1136319 schema:issn 0869-8643
95 1531-8699
96 schema:name Thermophysics and Aeromechanics
97 rdf:type schema:Periodical
98 sg:pub.10.1007/978-1-4020-9340-1_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007539634
99 https://doi.org/10.1007/978-1-4020-9340-1_8
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/978-3-642-33747-5_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020428672
102 https://doi.org/10.1007/978-3-642-33747-5_10
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s11666-011-9701-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045182079
105 https://doi.org/10.1007/s11666-011-9701-6
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11666-013-9940-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033131139
108 https://doi.org/10.1007/s11666-013-9940-9
109 rdf:type schema:CreativeWork
110 sg:pub.10.1134/s0869864307020114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010397147
111 https://doi.org/10.1134/s0869864307020114
112 rdf:type schema:CreativeWork
113 sg:pub.10.1134/s086986431404012x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011775299
114 https://doi.org/10.1134/s086986431404012x
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.optlaseng.2011.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005494849
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.optlastec.2008.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043295324
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.optlastec.2011.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039380255
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.phpro.2014.08.163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017977749
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1117/12.236111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038488777
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1117/12.251167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030839633
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1117/12.273390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027088753
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1117/12.301242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021321375
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1117/12.612531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024833056
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1364/josab.3.000008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065174391
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.426168.f schema:alternateName Institute of Theoretical and Applied Mechanics
137 schema:name Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Novosibirsk, Russia
138 rdf:type schema:Organization
139 https://www.grid.ac/institutes/grid.435275.2 schema:alternateName Institute of Laser Physics
140 schema:name Institute of Laser Physics SB RAS, Novosibirsk, Russia
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...