Thermoviscous fluid flow modes in a plane nonisothermal layer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Y. M. Kulikov, E. E. Son

ABSTRACT

This paper deals with 3D flow of thermoviscous fluid in the low compressibility approximation within a cubic-shaped domain enclosed between two flat plates with different temperatures. For two other directions, the problem statement assigns periodic boundary conditions, while the steady pressure drop is sustained for the head flow direction. Such formulation allows to trace the evolution of initial disturbances imposed on the main flow depending on perturba-tion properties. In this case, we consider a degenerate one-dimensional divergence-free noise that is modified by a special correlation filter. When the divergent noise is generated, the solenoid nature of random velocity field must be restored. The simulation demonstrates that random disturbance field development leads to two different scenarios: for the first low-amplitude case, the velocity profile loses initial inflection point and its flowrate increases by 1.5–1.6 times, but for the second one, the flow turbulization occurs destroying the flow core and decreasing the flowrate. In both outcomes, the transition to a steady flow mode in terms of either stationary velocity fields or statistical averag-es takes place for a long interval: up to t~200 dimensionless time units. The analysis of simulated flow is based on integral kinetic energy curves and enstrophy and also via spatial averaging of the obtained data arrays. More... »

PAGES

845-864

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0869864318060069

DOI

http://dx.doi.org/10.1134/s0869864318060069

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112395976


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Joint Institute for High Temperatures", 
          "id": "https://www.grid.ac/institutes/grid.435259.c", 
          "name": [
            "Joint Institute for High Temperatures RAS, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kulikov", 
        "givenName": "Y. M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Joint Institute for High Temperatures", 
          "id": "https://www.grid.ac/institutes/grid.435259.c", 
          "name": [
            "Joint Institute for High Temperatures RAS, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Son", 
        "givenName": "E. E.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s096554250912015x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017233466", 
          "https://doi.org/10.1134/s096554250912015x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s096554250912015x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017233466", 
          "https://doi.org/10.1134/s096554250912015x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1998.5882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020083251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2009.06.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020512620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10494-015-9649-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023320777", 
          "https://doi.org/10.1007/s10494-015-9649-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-6435-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024776842", 
          "https://doi.org/10.1007/978-1-4020-6435-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-6435-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024776842", 
          "https://doi.org/10.1007/978-1-4020-6435-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2013.12.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025509769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9991(03)00090-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027948410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9991(03)00090-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027948410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-013-1557-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035296170", 
          "https://doi.org/10.1007/s00348-013-1557-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0018151x14050216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038934768", 
          "https://doi.org/10.1134/s0018151x14050216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/754/10/102003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047664830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0869864316050061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050442398", 
          "https://doi.org/10.1134/s0869864316050061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0869864316050061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050442398", 
          "https://doi.org/10.1134/s0869864316050061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s2070048212020044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053705015", 
          "https://doi.org/10.1134/s2070048212020044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112099007946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053805776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112096000869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053886606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1693921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057765701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/pu1978v021n05abeh005554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058170648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/774/1/012094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059170000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/petrology/27.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059972663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0018151x17010254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084222716", 
          "https://doi.org/10.1134/s0018151x17010254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-017-2307-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084517605", 
          "https://doi.org/10.1007/s00348-017-2307-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-017-2307-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084517605", 
          "https://doi.org/10.1007/s00348-017-2307-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/946/1/012075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101191873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0869864317060075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101321308", 
          "https://doi.org/10.1134/s0869864317060075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0869864317060075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101321308", 
          "https://doi.org/10.1134/s0869864317060075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epje/i2018-11645-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101825176", 
          "https://doi.org/10.1140/epje/i2018-11645-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epje/i2018-11645-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101825176", 
          "https://doi.org/10.1140/epje/i2018-11645-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epje/i2018-11645-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101825176", 
          "https://doi.org/10.1140/epje/i2018-11645-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "This paper deals with 3D flow of thermoviscous fluid in the low compressibility approximation within a cubic-shaped domain enclosed between two flat plates with different temperatures. For two other directions, the problem statement assigns periodic boundary conditions, while the steady pressure drop is sustained for the head flow direction. Such formulation allows to trace the evolution of initial disturbances imposed on the main flow depending on perturba-tion properties. In this case, we consider a degenerate one-dimensional divergence-free noise that is modified by a special correlation filter. When the divergent noise is generated, the solenoid nature of random velocity field must be restored. The simulation demonstrates that random disturbance field development leads to two different scenarios: for the first low-amplitude case, the velocity profile loses initial inflection point and its flowrate increases by 1.5\u20131.6 times, but for the second one, the flow turbulization occurs destroying the flow core and decreasing the flowrate. In both outcomes, the transition to a steady flow mode in terms of either stationary velocity fields or statistical averag-es takes place for a long interval: up to t~200 dimensionless time units. The analysis of simulated flow is based on integral kinetic energy curves and enstrophy and also via spatial averaging of the obtained data arrays.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0869864318060069", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136319", 
        "issn": [
          "0869-8643", 
          "1531-8699"
        ], 
        "name": "Thermophysics and Aeromechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Thermoviscous fluid flow modes in a plane nonisothermal layer", 
    "pagination": "845-864", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c2d3ebb5544f3dd5fcc65d4fe420540a49c828911373f99622fd978d49e9f05e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0869864318060069"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112395976"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0869864318060069", 
      "https://app.dimensions.ai/details/publication/pub.1112395976"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89785_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0869864318060069"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0869864318060069'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0869864318060069'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0869864318060069'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0869864318060069'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0869864318060069 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N1939f62bfa27488f8d0769b6113682ff
4 schema:citation sg:pub.10.1007/978-1-4020-6435-7
5 sg:pub.10.1007/s00348-013-1557-8
6 sg:pub.10.1007/s00348-017-2307-0
7 sg:pub.10.1007/s10494-015-9649-6
8 sg:pub.10.1134/s0018151x14050216
9 sg:pub.10.1134/s0018151x17010254
10 sg:pub.10.1134/s0869864316050061
11 sg:pub.10.1134/s0869864317060075
12 sg:pub.10.1134/s096554250912015x
13 sg:pub.10.1134/s2070048212020044
14 sg:pub.10.1140/epje/i2018-11645-4
15 https://doi.org/10.1006/jcph.1998.5882
16 https://doi.org/10.1016/j.jcp.2009.06.037
17 https://doi.org/10.1016/j.jcp.2013.12.049
18 https://doi.org/10.1016/s0021-9991(03)00090-1
19 https://doi.org/10.1017/s0022112096000869
20 https://doi.org/10.1017/s0022112099007946
21 https://doi.org/10.1063/1.1693921
22 https://doi.org/10.1070/pu1978v021n05abeh005554
23 https://doi.org/10.1088/1742-6596/754/10/102003
24 https://doi.org/10.1088/1742-6596/774/1/012094
25 https://doi.org/10.1088/1742-6596/946/1/012075
26 https://doi.org/10.1093/petrology/27.1.1
27 schema:datePublished 2018-11
28 schema:datePublishedReg 2018-11-01
29 schema:description This paper deals with 3D flow of thermoviscous fluid in the low compressibility approximation within a cubic-shaped domain enclosed between two flat plates with different temperatures. For two other directions, the problem statement assigns periodic boundary conditions, while the steady pressure drop is sustained for the head flow direction. Such formulation allows to trace the evolution of initial disturbances imposed on the main flow depending on perturba-tion properties. In this case, we consider a degenerate one-dimensional divergence-free noise that is modified by a special correlation filter. When the divergent noise is generated, the solenoid nature of random velocity field must be restored. The simulation demonstrates that random disturbance field development leads to two different scenarios: for the first low-amplitude case, the velocity profile loses initial inflection point and its flowrate increases by 1.5–1.6 times, but for the second one, the flow turbulization occurs destroying the flow core and decreasing the flowrate. In both outcomes, the transition to a steady flow mode in terms of either stationary velocity fields or statistical averag-es takes place for a long interval: up to t~200 dimensionless time units. The analysis of simulated flow is based on integral kinetic energy curves and enstrophy and also via spatial averaging of the obtained data arrays.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N17d31b57e5ce461b8be367071b03047f
34 N31ada42093ba45a387db66b5c6b1bb74
35 sg:journal.1136319
36 schema:name Thermoviscous fluid flow modes in a plane nonisothermal layer
37 schema:pagination 845-864
38 schema:productId N53128a63c7b54310b80f9d8175227111
39 Nc1288d84786b4127b7b04d0280965687
40 Nfbe303c1e01e41abbba6390b69735bf0
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112395976
42 https://doi.org/10.1134/s0869864318060069
43 schema:sdDatePublished 2019-04-11T09:49
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N653f1e2db1e1404aac7d9e8ef08e44da
46 schema:url https://link.springer.com/10.1134%2FS0869864318060069
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N17d31b57e5ce461b8be367071b03047f schema:volumeNumber 25
51 rdf:type schema:PublicationVolume
52 N1939f62bfa27488f8d0769b6113682ff rdf:first N797197b50a95417d99ba300fff12b286
53 rdf:rest Nd425ee4155514b15ae29e7c417d6c31a
54 N31ada42093ba45a387db66b5c6b1bb74 schema:issueNumber 6
55 rdf:type schema:PublicationIssue
56 N53128a63c7b54310b80f9d8175227111 schema:name readcube_id
57 schema:value c2d3ebb5544f3dd5fcc65d4fe420540a49c828911373f99622fd978d49e9f05e
58 rdf:type schema:PropertyValue
59 N5d5ae4897d314216a19bd857db52459a schema:affiliation https://www.grid.ac/institutes/grid.435259.c
60 schema:familyName Son
61 schema:givenName E. E.
62 rdf:type schema:Person
63 N653f1e2db1e1404aac7d9e8ef08e44da schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N797197b50a95417d99ba300fff12b286 schema:affiliation https://www.grid.ac/institutes/grid.435259.c
66 schema:familyName Kulikov
67 schema:givenName Y. M.
68 rdf:type schema:Person
69 Nc1288d84786b4127b7b04d0280965687 schema:name doi
70 schema:value 10.1134/s0869864318060069
71 rdf:type schema:PropertyValue
72 Nd425ee4155514b15ae29e7c417d6c31a rdf:first N5d5ae4897d314216a19bd857db52459a
73 rdf:rest rdf:nil
74 Nfbe303c1e01e41abbba6390b69735bf0 schema:name dimensions_id
75 schema:value pub.1112395976
76 rdf:type schema:PropertyValue
77 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
78 schema:name Engineering
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
81 schema:name Interdisciplinary Engineering
82 rdf:type schema:DefinedTerm
83 sg:journal.1136319 schema:issn 0869-8643
84 1531-8699
85 schema:name Thermophysics and Aeromechanics
86 rdf:type schema:Periodical
87 sg:pub.10.1007/978-1-4020-6435-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024776842
88 https://doi.org/10.1007/978-1-4020-6435-7
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s00348-013-1557-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035296170
91 https://doi.org/10.1007/s00348-013-1557-8
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s00348-017-2307-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084517605
94 https://doi.org/10.1007/s00348-017-2307-0
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s10494-015-9649-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023320777
97 https://doi.org/10.1007/s10494-015-9649-6
98 rdf:type schema:CreativeWork
99 sg:pub.10.1134/s0018151x14050216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038934768
100 https://doi.org/10.1134/s0018151x14050216
101 rdf:type schema:CreativeWork
102 sg:pub.10.1134/s0018151x17010254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084222716
103 https://doi.org/10.1134/s0018151x17010254
104 rdf:type schema:CreativeWork
105 sg:pub.10.1134/s0869864316050061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050442398
106 https://doi.org/10.1134/s0869864316050061
107 rdf:type schema:CreativeWork
108 sg:pub.10.1134/s0869864317060075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101321308
109 https://doi.org/10.1134/s0869864317060075
110 rdf:type schema:CreativeWork
111 sg:pub.10.1134/s096554250912015x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017233466
112 https://doi.org/10.1134/s096554250912015x
113 rdf:type schema:CreativeWork
114 sg:pub.10.1134/s2070048212020044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053705015
115 https://doi.org/10.1134/s2070048212020044
116 rdf:type schema:CreativeWork
117 sg:pub.10.1140/epje/i2018-11645-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101825176
118 https://doi.org/10.1140/epje/i2018-11645-4
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1006/jcph.1998.5882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020083251
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.jcp.2009.06.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020512620
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.jcp.2013.12.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025509769
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0021-9991(03)00090-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027948410
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1017/s0022112096000869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053886606
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1017/s0022112099007946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053805776
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1063/1.1693921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057765701
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1070/pu1978v021n05abeh005554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058170648
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1088/1742-6596/754/10/102003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047664830
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1088/1742-6596/774/1/012094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059170000
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1088/1742-6596/946/1/012075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101191873
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1093/petrology/27.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059972663
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.435259.c schema:alternateName Joint Institute for High Temperatures
145 schema:name Joint Institute for High Temperatures RAS, Moscow, Russia
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...