Structural and Functional Neuroimaging in Amyotrophic Lateral Sclerosis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

I. S. Bakulin, A. V. Chervyakov, E. I. Kremneva, R. N. Konovalov, M. N. Zakharova

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal progressive disorder of the central nervous system affecting the upper and lower motor neurons. It is important to study the specific nature of the disease course and the character of neurodegenerative process expansion in ALS, since no effective methods of treatment for this disease have been developed yet. Despite the clear evidence of multisystem brain damage in ALS, there are no objective biomarkers of the upper motor neuron lesion and extramotor brain areas involvement. In recent years, structural and functional neuroimaging, such as MR-morphometry, diffusion-tensor magnetic resonance imaging, MR spectroscopy, functional MRI, positron emission tomography (PET), etc., have been playing a significant role in research on ALS. This review analyzes the results of neuroimaging methods in the context of their application for diagnostics, prediction, and monitoring the ALS course. The most sensitive and specific techniques to diagnose the disease are diffusion-tensor MRI, MR spectroscopy, PET, a combination of several neuroimaging methods, and neuroimaging with transcranial magnetic stimulation. Diffusion-tensor MRI and MR spectroscopy can be used to monitor and predict the disease course. The main limitations and weak points of the published studies on this topic, as well as the prospective for neuroimaging in ALS, are discussed. More... »

PAGES

844-854

References to SciGraph publications

  • 2014-10-14. The phenotypic variability of amyotrophic lateral sclerosis in NATURE REVIEWS NEUROLOGY
  • 2007-03-25. Altered cortical activation during a motor task in ALS in JOURNAL OF NEUROLOGY
  • 2013-08-06. 25 years of neuroimaging in amyotrophic lateral sclerosis in NATURE REVIEWS NEUROLOGY
  • 2012-07. The role of RNA metabolism in the pathogenesis of amyotrophic lateral sclerosis in NEUROCHEMICAL JOURNAL
  • 2007-04-13. Brain metabolites in definite amyotrophic lateral sclerosis in JOURNAL OF NEUROLOGY
  • 2015-03-20. Neuroimaging as a New Diagnostic Modality in Amyotrophic Lateral Sclerosis in NEUROTHERAPEUTICS
  • 2012-11-08. Longitudinal diffusion tensor imaging in amyotrophic lateral sclerosis in BMC NEUROSCIENCE
  • 2015-01-13. Clinical Measures of Disease Progression in Amyotrophic Lateral Sclerosis in NEUROTHERAPEUTICS
  • 2006-04-11. Rapid improvement in cortical neuronal integrity in amyotrophic lateral sclerosis detected by proton magnetic resonance spectroscopic imaging in JOURNAL OF NEUROLOGY
  • 2013-01-09. Upper motor neuron involvement in amyotrophic lateral sclerosis evaluated by triple stimulation technique and diffusion tensor MRI in JOURNAL OF NEUROLOGY
  • 2002-09. In-vivo proton MR-spectroscopy of the human brain: Assessment of N-acetylaspartate (NAA) reduction as a marker for neurodegeneration in AMINO ACIDS
  • 2002-01-24. Pattern of cortical reorganization in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study in EXPERIMENTAL BRAIN RESEARCH
  • 2015-05-26. What Does Imaging Reveal About the Pathology of Amyotrophic Lateral Sclerosis? in CURRENT NEUROLOGY AND NEUROSCIENCE REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0362119718080029

    DOI

    http://dx.doi.org/10.1134/s0362119718080029

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112761282


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Research Center of Neurology, 125367, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.465332.5", 
              "name": [
                "Research Center of Neurology, 125367, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bakulin", 
            "givenName": "I. S.", 
            "id": "sg:person.01327132500.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327132500.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Research Center of Neurology, 125367, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.465332.5", 
              "name": [
                "Research Center of Neurology, 125367, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chervyakov", 
            "givenName": "A. V.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Research Center of Neurology, 125367, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.465332.5", 
              "name": [
                "Research Center of Neurology, 125367, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kremneva", 
            "givenName": "E. I.", 
            "id": "sg:person.013171651225.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013171651225.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Research Center of Neurology, 125367, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.465332.5", 
              "name": [
                "Research Center of Neurology, 125367, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Konovalov", 
            "givenName": "R. N.", 
            "id": "sg:person.01300541575.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300541575.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Research Center of Neurology, 125367, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.465332.5", 
              "name": [
                "Research Center of Neurology, 125367, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zakharova", 
            "givenName": "M. N.", 
            "id": "sg:person.016313523751.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016313523751.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s13311-015-0347-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038614431", 
              "https://doi.org/10.1007/s13311-015-0347-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13311-014-0331-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004533102", 
              "https://doi.org/10.1007/s13311-014-0331-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11910-015-0569-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016484420", 
              "https://doi.org/10.1007/s11910-015-0569-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00726-001-0144-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048686219", 
              "https://doi.org/10.1007/s00726-001-0144-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2202-13-141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036794128", 
              "https://doi.org/10.1186/1471-2202-13-141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00415-006-0513-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050839638", 
              "https://doi.org/10.1007/s00415-006-0513-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrneurol.2014.184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042980096", 
              "https://doi.org/10.1038/nrneurol.2014.184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00221-001-0981-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012617844", 
              "https://doi.org/10.1007/s00221-001-0981-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00415-012-6824-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022159009", 
              "https://doi.org/10.1007/s00415-012-6824-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00415-006-0495-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001734145", 
              "https://doi.org/10.1007/s00415-006-0495-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00415-006-0162-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022435775", 
              "https://doi.org/10.1007/s00415-006-0162-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1819712412030099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040785262", 
              "https://doi.org/10.1134/s1819712412030099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrneurol.2013.153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017953301", 
              "https://doi.org/10.1038/nrneurol.2013.153"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Amyotrophic lateral sclerosis (ALS) is a fatal progressive disorder of the central nervous system affecting the upper and lower motor neurons. It is important to study the specific nature of the disease course and the character of neurodegenerative process expansion in ALS, since no effective methods of treatment for this disease have been developed yet. Despite the clear evidence of multisystem brain damage in ALS, there are no objective biomarkers of the upper motor neuron lesion and extramotor brain areas involvement. In recent years, structural and functional neuroimaging, such as MR-morphometry, diffusion-tensor magnetic resonance imaging, MR spectroscopy, functional MRI, positron emission tomography (PET), etc., have been playing a significant role in research on ALS. This review analyzes the results of neuroimaging methods in the context of their application for diagnostics, prediction, and monitoring the ALS course. The most sensitive and specific techniques to diagnose the disease are diffusion-tensor MRI, MR spectroscopy, PET, a combination of several neuroimaging methods, and neuroimaging with transcranial magnetic stimulation. Diffusion-tensor MRI and MR spectroscopy can be used to monitor and predict the disease course. The main limitations and weak points of the published studies on this topic, as well as the prospective for neuroimaging in ALS, are discussed.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s0362119718080029", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1085127", 
            "issn": [
              "0362-1197", 
              "1608-3164"
            ], 
            "name": "Human Physiology", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "44"
          }
        ], 
        "keywords": [
          "amyotrophic lateral sclerosis", 
          "positron emission tomography", 
          "diffusion-tensor MRI", 
          "disease course", 
          "MR spectroscopy", 
          "lateral sclerosis", 
          "upper motor neuron lesions", 
          "functional neuroimaging", 
          "motor neuron lesions", 
          "lower motor neurons", 
          "transcranial magnetic stimulation", 
          "central nervous system", 
          "magnetic resonance imaging", 
          "diffusion-tensor magnetic resonance imaging", 
          "neuron lesions", 
          "area involvement", 
          "brain damage", 
          "objective biomarkers", 
          "progressive disorder", 
          "ALS course", 
          "magnetic stimulation", 
          "motor neurons", 
          "nervous system", 
          "emission tomography", 
          "resonance imaging", 
          "functional MRI", 
          "MRI", 
          "sclerosis", 
          "disease", 
          "neuroimaging", 
          "course", 
          "lesions", 
          "neurons", 
          "stimulation", 
          "biomarkers", 
          "disorders", 
          "Prospective", 
          "tomography", 
          "clear evidence", 
          "treatment", 
          "specific techniques", 
          "involvement", 
          "significant role", 
          "imaging", 
          "process expansion", 
          "review", 
          "effective method", 
          "main limitation", 
          "years", 
          "damage", 
          "evidence", 
          "study", 
          "role", 
          "recent years", 
          "specific nature", 
          "combination", 
          "diagnostics", 
          "method", 
          "results", 
          "limitations", 
          "research", 
          "technique", 
          "point", 
          "expansion", 
          "topic", 
          "nature", 
          "system", 
          "context", 
          "weak points", 
          "prediction", 
          "applications", 
          "character", 
          "spectroscopy", 
          "fatal progressive disorder", 
          "neurodegenerative process expansion", 
          "multisystem brain damage", 
          "extramotor brain areas involvement", 
          "brain areas involvement", 
          "MR-morphometry"
        ], 
        "name": "Structural and Functional Neuroimaging in Amyotrophic Lateral Sclerosis", 
        "pagination": "844-854", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112761282"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0362119718080029"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0362119718080029", 
          "https://app.dimensions.ai/details/publication/pub.1112761282"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_789.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s0362119718080029"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0362119718080029'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0362119718080029'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0362119718080029'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0362119718080029'


     

    This table displays all metadata directly associated to this object as RDF triples.

    216 TRIPLES      22 PREDICATES      118 URIs      97 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0362119718080029 schema:about anzsrc-for:11
    2 anzsrc-for:1109
    3 schema:author N9e20b09e78b443caab756dd1f09d1525
    4 schema:citation sg:pub.10.1007/s00221-001-0981-9
    5 sg:pub.10.1007/s00415-006-0162-7
    6 sg:pub.10.1007/s00415-006-0495-2
    7 sg:pub.10.1007/s00415-006-0513-4
    8 sg:pub.10.1007/s00415-012-6824-8
    9 sg:pub.10.1007/s00726-001-0144-0
    10 sg:pub.10.1007/s11910-015-0569-6
    11 sg:pub.10.1007/s13311-014-0331-9
    12 sg:pub.10.1007/s13311-015-0347-9
    13 sg:pub.10.1038/nrneurol.2013.153
    14 sg:pub.10.1038/nrneurol.2014.184
    15 sg:pub.10.1134/s1819712412030099
    16 sg:pub.10.1186/1471-2202-13-141
    17 schema:datePublished 2018-12
    18 schema:datePublishedReg 2018-12-01
    19 schema:description Amyotrophic lateral sclerosis (ALS) is a fatal progressive disorder of the central nervous system affecting the upper and lower motor neurons. It is important to study the specific nature of the disease course and the character of neurodegenerative process expansion in ALS, since no effective methods of treatment for this disease have been developed yet. Despite the clear evidence of multisystem brain damage in ALS, there are no objective biomarkers of the upper motor neuron lesion and extramotor brain areas involvement. In recent years, structural and functional neuroimaging, such as MR-morphometry, diffusion-tensor magnetic resonance imaging, MR spectroscopy, functional MRI, positron emission tomography (PET), etc., have been playing a significant role in research on ALS. This review analyzes the results of neuroimaging methods in the context of their application for diagnostics, prediction, and monitoring the ALS course. The most sensitive and specific techniques to diagnose the disease are diffusion-tensor MRI, MR spectroscopy, PET, a combination of several neuroimaging methods, and neuroimaging with transcranial magnetic stimulation. Diffusion-tensor MRI and MR spectroscopy can be used to monitor and predict the disease course. The main limitations and weak points of the published studies on this topic, as well as the prospective for neuroimaging in ALS, are discussed.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N56576995c2184ff49377bfd6a5d7e02f
    24 Ne7e5a10be38041cba7f0443b9a453f18
    25 sg:journal.1085127
    26 schema:keywords ALS course
    27 MR spectroscopy
    28 MR-morphometry
    29 MRI
    30 Prospective
    31 amyotrophic lateral sclerosis
    32 applications
    33 area involvement
    34 biomarkers
    35 brain areas involvement
    36 brain damage
    37 central nervous system
    38 character
    39 clear evidence
    40 combination
    41 context
    42 course
    43 damage
    44 diagnostics
    45 diffusion-tensor MRI
    46 diffusion-tensor magnetic resonance imaging
    47 disease
    48 disease course
    49 disorders
    50 effective method
    51 emission tomography
    52 evidence
    53 expansion
    54 extramotor brain areas involvement
    55 fatal progressive disorder
    56 functional MRI
    57 functional neuroimaging
    58 imaging
    59 involvement
    60 lateral sclerosis
    61 lesions
    62 limitations
    63 lower motor neurons
    64 magnetic resonance imaging
    65 magnetic stimulation
    66 main limitation
    67 method
    68 motor neuron lesions
    69 motor neurons
    70 multisystem brain damage
    71 nature
    72 nervous system
    73 neurodegenerative process expansion
    74 neuroimaging
    75 neuron lesions
    76 neurons
    77 objective biomarkers
    78 point
    79 positron emission tomography
    80 prediction
    81 process expansion
    82 progressive disorder
    83 recent years
    84 research
    85 resonance imaging
    86 results
    87 review
    88 role
    89 sclerosis
    90 significant role
    91 specific nature
    92 specific techniques
    93 spectroscopy
    94 stimulation
    95 study
    96 system
    97 technique
    98 tomography
    99 topic
    100 transcranial magnetic stimulation
    101 treatment
    102 upper motor neuron lesions
    103 weak points
    104 years
    105 schema:name Structural and Functional Neuroimaging in Amyotrophic Lateral Sclerosis
    106 schema:pagination 844-854
    107 schema:productId N33b1c92d168a4112b5eda8a0d49fbb02
    108 Nb25f4616dcb44ec09f23cc3a03d7f2bf
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112761282
    110 https://doi.org/10.1134/s0362119718080029
    111 schema:sdDatePublished 2021-11-01T18:34
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher Ncdedfd6dfbff4856ba078b407c178dba
    114 schema:url https://doi.org/10.1134/s0362119718080029
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N33b1c92d168a4112b5eda8a0d49fbb02 schema:name doi
    119 schema:value 10.1134/s0362119718080029
    120 rdf:type schema:PropertyValue
    121 N56576995c2184ff49377bfd6a5d7e02f schema:issueNumber 8
    122 rdf:type schema:PublicationIssue
    123 N8066f62a9d2e4d69849063a66b7f6685 schema:affiliation grid-institutes:grid.465332.5
    124 schema:familyName Chervyakov
    125 schema:givenName A. V.
    126 rdf:type schema:Person
    127 N850f9f6942cf42339c902c0ef756b8cc rdf:first sg:person.016313523751.76
    128 rdf:rest rdf:nil
    129 N94d74cd236e642be945e72c3effbf0a8 rdf:first sg:person.013171651225.11
    130 rdf:rest Na7f0baecdeb140e89d365818574e0500
    131 N9e20b09e78b443caab756dd1f09d1525 rdf:first sg:person.01327132500.72
    132 rdf:rest Nc1c630a6c289468eabec0fcd1935c1a3
    133 Na7f0baecdeb140e89d365818574e0500 rdf:first sg:person.01300541575.71
    134 rdf:rest N850f9f6942cf42339c902c0ef756b8cc
    135 Nb25f4616dcb44ec09f23cc3a03d7f2bf schema:name dimensions_id
    136 schema:value pub.1112761282
    137 rdf:type schema:PropertyValue
    138 Nc1c630a6c289468eabec0fcd1935c1a3 rdf:first N8066f62a9d2e4d69849063a66b7f6685
    139 rdf:rest N94d74cd236e642be945e72c3effbf0a8
    140 Ncdedfd6dfbff4856ba078b407c178dba schema:name Springer Nature - SN SciGraph project
    141 rdf:type schema:Organization
    142 Ne7e5a10be38041cba7f0443b9a453f18 schema:volumeNumber 44
    143 rdf:type schema:PublicationVolume
    144 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Medical and Health Sciences
    146 rdf:type schema:DefinedTerm
    147 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Neurosciences
    149 rdf:type schema:DefinedTerm
    150 sg:journal.1085127 schema:issn 0362-1197
    151 1608-3164
    152 schema:name Human Physiology
    153 schema:publisher Pleiades Publishing
    154 rdf:type schema:Periodical
    155 sg:person.01300541575.71 schema:affiliation grid-institutes:grid.465332.5
    156 schema:familyName Konovalov
    157 schema:givenName R. N.
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300541575.71
    159 rdf:type schema:Person
    160 sg:person.013171651225.11 schema:affiliation grid-institutes:grid.465332.5
    161 schema:familyName Kremneva
    162 schema:givenName E. I.
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013171651225.11
    164 rdf:type schema:Person
    165 sg:person.01327132500.72 schema:affiliation grid-institutes:grid.465332.5
    166 schema:familyName Bakulin
    167 schema:givenName I. S.
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327132500.72
    169 rdf:type schema:Person
    170 sg:person.016313523751.76 schema:affiliation grid-institutes:grid.465332.5
    171 schema:familyName Zakharova
    172 schema:givenName M. N.
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016313523751.76
    174 rdf:type schema:Person
    175 sg:pub.10.1007/s00221-001-0981-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012617844
    176 https://doi.org/10.1007/s00221-001-0981-9
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s00415-006-0162-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022435775
    179 https://doi.org/10.1007/s00415-006-0162-7
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s00415-006-0495-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001734145
    182 https://doi.org/10.1007/s00415-006-0495-2
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s00415-006-0513-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050839638
    185 https://doi.org/10.1007/s00415-006-0513-4
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s00415-012-6824-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022159009
    188 https://doi.org/10.1007/s00415-012-6824-8
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s00726-001-0144-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048686219
    191 https://doi.org/10.1007/s00726-001-0144-0
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s11910-015-0569-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016484420
    194 https://doi.org/10.1007/s11910-015-0569-6
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s13311-014-0331-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004533102
    197 https://doi.org/10.1007/s13311-014-0331-9
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s13311-015-0347-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038614431
    200 https://doi.org/10.1007/s13311-015-0347-9
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nrneurol.2013.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017953301
    203 https://doi.org/10.1038/nrneurol.2013.153
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nrneurol.2014.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042980096
    206 https://doi.org/10.1038/nrneurol.2014.184
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1134/s1819712412030099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040785262
    209 https://doi.org/10.1134/s1819712412030099
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1186/1471-2202-13-141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036794128
    212 https://doi.org/10.1186/1471-2202-13-141
    213 rdf:type schema:CreativeWork
    214 grid-institutes:grid.465332.5 schema:alternateName Research Center of Neurology, 125367, Moscow, Russia
    215 schema:name Research Center of Neurology, 125367, Moscow, Russia
    216 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...