Uniform Approximation by Perfect Splines View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

A. V. Mironenko

ABSTRACT

The problem of uniform approximation of a continuous function on a closed interval is considered. In the case of approximation by the class W(n) of functions whose nth derivative is bounded by 1 almost everywhere, a criterion for a best approximation element is known. This criterion, in particular, requires that the approximating function coincide on some subinterval with a perfect spline of degree n with finitely many knots. Since perfect splines belong to the class W(n), we study the following restriction of the problem: a continuous function is approximated by the set of perfect splines with an arbitrary finite number of knots. We establish the existence of a perfect spline that is a best approximation element both in W(n) and in this set. Therefore, the values of the best approximation in the problems are equal. We also show that the best approximation elements in this set satisfy a criterion similar to the criterion for a best approximation element in W(n). The set of perfect splines is shown to be everywhere dense in W(n). More... »

PAGES

175-182

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0081543818090183

DOI

http://dx.doi.org/10.1134/s0081543818090183

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112591691


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ural Branch of the Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.426536.0", 
          "name": [
            "Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 620990, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mironenko", 
        "givenName": "A. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jath.1997.3098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002244171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-6253-0_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017545917", 
          "https://doi.org/10.1007/978-3-0348-6253-0_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1978-0481760-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019857428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9904-1974-13572-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038700084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-213650-4.50029-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041646397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:matn.0000008998.41243.75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051656005", 
          "https://doi.org/10.1023/b:matn.0000008998.41243.75"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The problem of uniform approximation of a continuous function on a closed interval is considered. In the case of approximation by the class W(n) of functions whose nth derivative is bounded by 1 almost everywhere, a criterion for a best approximation element is known. This criterion, in particular, requires that the approximating function coincide on some subinterval with a perfect spline of degree n with finitely many knots. Since perfect splines belong to the class W(n), we study the following restriction of the problem: a continuous function is approximated by the set of perfect splines with an arbitrary finite number of knots. We establish the existence of a perfect spline that is a best approximation element both in W(n) and in this set. Therefore, the values of the best approximation in the problems are equal. We also show that the best approximation elements in this set satisfy a criterion similar to the criterion for a best approximation element in W(n). The set of perfect splines is shown to be everywhere dense in W(n).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0081543818090183", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136804", 
        "issn": [
          "0081-5438", 
          "1531-8605"
        ], 
        "name": "Proceedings of the Steklov Institute of Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "303"
      }
    ], 
    "name": "Uniform Approximation by Perfect Splines", 
    "pagination": "175-182", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1c6cbd6b2c635ddf66a3ac6473bfaf62043f93bffc931e2b7a1fac77d81eabcd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0081543818090183"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112591691"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0081543818090183", 
      "https://app.dimensions.ai/details/publication/pub.1112591691"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45363_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0081543818090183"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0081543818090183'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0081543818090183'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0081543818090183'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0081543818090183'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0081543818090183 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N0154b1d1639849a2a2c93ac511f45f4f
4 schema:citation sg:pub.10.1007/978-3-0348-6253-0_5
5 sg:pub.10.1023/b:matn.0000008998.41243.75
6 https://doi.org/10.1006/jath.1997.3098
7 https://doi.org/10.1016/b978-0-12-213650-4.50029-5
8 https://doi.org/10.1090/s0002-9904-1974-13572-x
9 https://doi.org/10.1090/s0002-9939-1978-0481760-9
10 schema:datePublished 2018-12
11 schema:datePublishedReg 2018-12-01
12 schema:description The problem of uniform approximation of a continuous function on a closed interval is considered. In the case of approximation by the class W(n) of functions whose nth derivative is bounded by 1 almost everywhere, a criterion for a best approximation element is known. This criterion, in particular, requires that the approximating function coincide on some subinterval with a perfect spline of degree n with finitely many knots. Since perfect splines belong to the class W(n), we study the following restriction of the problem: a continuous function is approximated by the set of perfect splines with an arbitrary finite number of knots. We establish the existence of a perfect spline that is a best approximation element both in W(n) and in this set. Therefore, the values of the best approximation in the problems are equal. We also show that the best approximation elements in this set satisfy a criterion similar to the criterion for a best approximation element in W(n). The set of perfect splines is shown to be everywhere dense in W(n).
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N04138bf83eba456a8cc133004c4814e5
17 N7756fb570af047d19da7e4255c3e0771
18 sg:journal.1136804
19 schema:name Uniform Approximation by Perfect Splines
20 schema:pagination 175-182
21 schema:productId N057324f94a7b434798bca209a64ae863
22 N80c295446da448769ee6a6fad84c2821
23 N90ac96038b5e470487642064bc60fe8a
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112591691
25 https://doi.org/10.1134/s0081543818090183
26 schema:sdDatePublished 2019-04-11T11:12
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N53f743877d3540a7941117704782972d
29 schema:url https://link.springer.com/10.1134%2FS0081543818090183
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N0154b1d1639849a2a2c93ac511f45f4f rdf:first Nd148f84e302b4804bb97df6c42568ccc
34 rdf:rest rdf:nil
35 N04138bf83eba456a8cc133004c4814e5 schema:volumeNumber 303
36 rdf:type schema:PublicationVolume
37 N057324f94a7b434798bca209a64ae863 schema:name dimensions_id
38 schema:value pub.1112591691
39 rdf:type schema:PropertyValue
40 N53f743877d3540a7941117704782972d schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N7756fb570af047d19da7e4255c3e0771 schema:issueNumber Suppl 1
43 rdf:type schema:PublicationIssue
44 N80c295446da448769ee6a6fad84c2821 schema:name readcube_id
45 schema:value 1c6cbd6b2c635ddf66a3ac6473bfaf62043f93bffc931e2b7a1fac77d81eabcd
46 rdf:type schema:PropertyValue
47 N90ac96038b5e470487642064bc60fe8a schema:name doi
48 schema:value 10.1134/s0081543818090183
49 rdf:type schema:PropertyValue
50 Nd148f84e302b4804bb97df6c42568ccc schema:affiliation https://www.grid.ac/institutes/grid.426536.0
51 schema:familyName Mironenko
52 schema:givenName A. V.
53 rdf:type schema:Person
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
58 schema:name Numerical and Computational Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1136804 schema:issn 0081-5438
61 1531-8605
62 schema:name Proceedings of the Steklov Institute of Mathematics
63 rdf:type schema:Periodical
64 sg:pub.10.1007/978-3-0348-6253-0_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017545917
65 https://doi.org/10.1007/978-3-0348-6253-0_5
66 rdf:type schema:CreativeWork
67 sg:pub.10.1023/b:matn.0000008998.41243.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051656005
68 https://doi.org/10.1023/b:matn.0000008998.41243.75
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1006/jath.1997.3098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002244171
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1016/b978-0-12-213650-4.50029-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041646397
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1090/s0002-9904-1974-13572-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038700084
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1090/s0002-9939-1978-0481760-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019857428
77 rdf:type schema:CreativeWork
78 https://www.grid.ac/institutes/grid.426536.0 schema:alternateName Ural Branch of the Russian Academy of Sciences
79 schema:name Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 620990, Yekaterinburg, Russia
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...