One-sided approximation in L of the characteristic function of an interval by trigonometric polynomials View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-04

AUTHORS

A. G. Babenko, Yu. V. Kryakin, V. A. Yudin

ABSTRACT

The value of the best one-sided integral approximation of the characteristic function of the interval (−h, h) by trigonometric polynomials of given degree is found for any 0 < h ≤ π.

PAGES

39-52

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0081543813020041

DOI

http://dx.doi.org/10.1134/s0081543813020041

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013817590


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ural Federal University", 
          "id": "https://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi 16, 620990, Yekaterinburg, Russia", 
            "Graduate School of Economics and Management, Ural Federal University, ul. Mira 19, 620002, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Babenko", 
        "givenName": "A. G.", 
        "id": "sg:person.015301704215.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015301704215.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wroc\u0142aw", 
          "id": "https://www.grid.ac/institutes/grid.8505.8", 
          "name": [
            "Mathematical Institute, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384, Wroclaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kryakin", 
        "givenName": "Yu. V.", 
        "id": "sg:person.014132303246.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014132303246.21"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Yudin", 
        "givenName": "V. A.", 
        "id": "sg:person.011770460625.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011770460625.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1016029738", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61983-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016029738", 
          "https://doi.org/10.1007/978-3-642-61983-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61983-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016029738", 
          "https://doi.org/10.1007/978-3-642-61983-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-1985-15349-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018397863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1937-1501930-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035529617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-08-02119-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048595231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1968756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/asens.245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084408708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/cbms/084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098708502"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-04", 
    "datePublishedReg": "2013-04-01", 
    "description": "The value of the best one-sided integral approximation of the characteristic function of the interval (\u2212h, h) by trigonometric polynomials of given degree is found for any 0 < h \u2264 \u03c0.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0081543813020041", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136804", 
        "issn": [
          "0081-5438", 
          "1531-8605"
        ], 
        "name": "Proceedings of the Steklov Institute of Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "280"
      }
    ], 
    "name": "One-sided approximation in L of the characteristic function of an interval by trigonometric polynomials", 
    "pagination": "39-52", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "41d2dc5abd3bbf9429dae610fc8856edca341eb7aea433b5298dd18c48ae8ef3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0081543813020041"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013817590"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0081543813020041", 
      "https://app.dimensions.ai/details/publication/pub.1013817590"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0081543813020041"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0081543813020041'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0081543813020041'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0081543813020041'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0081543813020041'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      20 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0081543813020041 schema:author Nebb8cfad8255494bb3e7509e4b7c625f
2 schema:citation sg:pub.10.1007/978-3-642-61983-0
3 https://app.dimensions.ai/details/publication/pub.1016029738
4 https://doi.org/10.1090/cbms/084
5 https://doi.org/10.1090/s0002-9947-1937-1501930-6
6 https://doi.org/10.1090/s0025-5718-08-02119-4
7 https://doi.org/10.1090/s0273-0979-1985-15349-2
8 https://doi.org/10.2307/1968756
9 https://doi.org/10.24033/asens.245
10 schema:datePublished 2013-04
11 schema:datePublishedReg 2013-04-01
12 schema:description The value of the best one-sided integral approximation of the characteristic function of the interval (−h, h) by trigonometric polynomials of given degree is found for any 0 < h ≤ π.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N08e84e0641074542b8be495f28bc1344
17 Naf66857611ec453d982ba2ec1446aaef
18 sg:journal.1136804
19 schema:name One-sided approximation in L of the characteristic function of an interval by trigonometric polynomials
20 schema:pagination 39-52
21 schema:productId N39111ed4ccd04bf6be09d495a5fa4217
22 Nd83c529bf1a84e9da521d52d6554e5dd
23 Ndc22b18b579d4c068e72b9eecfd84515
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013817590
25 https://doi.org/10.1134/s0081543813020041
26 schema:sdDatePublished 2019-04-10T21:35
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N55d53f39ca324f2dbbcadc7d6b38f077
29 schema:url http://link.springer.com/10.1134/S0081543813020041
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N08e84e0641074542b8be495f28bc1344 schema:volumeNumber 280
34 rdf:type schema:PublicationVolume
35 N39111ed4ccd04bf6be09d495a5fa4217 schema:name dimensions_id
36 schema:value pub.1013817590
37 rdf:type schema:PropertyValue
38 N4c73fff22ad845b783d522d736227d5a rdf:first sg:person.014132303246.21
39 rdf:rest Na96f3205569f42bf822d2700813b653c
40 N55d53f39ca324f2dbbcadc7d6b38f077 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 Na96f3205569f42bf822d2700813b653c rdf:first sg:person.011770460625.06
43 rdf:rest rdf:nil
44 Naf66857611ec453d982ba2ec1446aaef schema:issueNumber Suppl 1
45 rdf:type schema:PublicationIssue
46 Nd83c529bf1a84e9da521d52d6554e5dd schema:name readcube_id
47 schema:value 41d2dc5abd3bbf9429dae610fc8856edca341eb7aea433b5298dd18c48ae8ef3
48 rdf:type schema:PropertyValue
49 Ndc22b18b579d4c068e72b9eecfd84515 schema:name doi
50 schema:value 10.1134/s0081543813020041
51 rdf:type schema:PropertyValue
52 Nebb8cfad8255494bb3e7509e4b7c625f rdf:first sg:person.015301704215.94
53 rdf:rest N4c73fff22ad845b783d522d736227d5a
54 sg:journal.1136804 schema:issn 0081-5438
55 1531-8605
56 schema:name Proceedings of the Steklov Institute of Mathematics
57 rdf:type schema:Periodical
58 sg:person.011770460625.06 schema:familyName Yudin
59 schema:givenName V. A.
60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011770460625.06
61 rdf:type schema:Person
62 sg:person.014132303246.21 schema:affiliation https://www.grid.ac/institutes/grid.8505.8
63 schema:familyName Kryakin
64 schema:givenName Yu. V.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014132303246.21
66 rdf:type schema:Person
67 sg:person.015301704215.94 schema:affiliation https://www.grid.ac/institutes/grid.412761.7
68 schema:familyName Babenko
69 schema:givenName A. G.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015301704215.94
71 rdf:type schema:Person
72 sg:pub.10.1007/978-3-642-61983-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016029738
73 https://doi.org/10.1007/978-3-642-61983-0
74 rdf:type schema:CreativeWork
75 https://app.dimensions.ai/details/publication/pub.1016029738 schema:CreativeWork
76 https://doi.org/10.1090/cbms/084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098708502
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1090/s0002-9947-1937-1501930-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035529617
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1090/s0025-5718-08-02119-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048595231
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1090/s0273-0979-1985-15349-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018397863
83 rdf:type schema:CreativeWork
84 https://doi.org/10.2307/1968756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674164
85 rdf:type schema:CreativeWork
86 https://doi.org/10.24033/asens.245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084408708
87 rdf:type schema:CreativeWork
88 https://www.grid.ac/institutes/grid.412761.7 schema:alternateName Ural Federal University
89 schema:name Graduate School of Economics and Management, Ural Federal University, ul. Mira 19, 620002, Yekaterinburg, Russia
90 Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi 16, 620990, Yekaterinburg, Russia
91 rdf:type schema:Organization
92 https://www.grid.ac/institutes/grid.8505.8 schema:alternateName University of Wrocław
93 schema:name Mathematical Institute, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384, Wroclaw, Poland
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...