Methods for Simplification of the Mathematical Model for the Calculation of Flows in the Flow Path of Hydraulic Turbines View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-12-17

AUTHORS

S. Fialová, F. Pochylý, A. V. Volkov, A. V. Ryzhenkov, A. A. Druzhinin

ABSTRACT

The main concern of this paper is fundamental research into an acute problem arising in the operation of hydraulic turbines, namely, the formation of a vortex core downstream of the impeller. It is noted that, at present, the operating range of these machines has to be extended due to the change in power network loads in daily and seasonal cycles, thereby increasing the time of hydraulic turbines' operation under off-design or undesirable conditions, including those involving the risk of formation of a vortex of varying intensity. To describe this complex fluid flow, a mathematical model of the vortex core flow downstream of the hydraulic turbine’s impeller was developed. This paper focuses on the fundamental issues encountered in developing the mathematical model. The methods are presented for simplifying the formulation of equations describing the structure of vortex rope formed in the flowpath. In this case, the equations of mathematical physics containing a dependent variable and taking the form of the Navier–Stokes equations when applied fluids flows were employed. They describe the time changes of the selected parameters in a controlled volume induced by the flow through the volume boundaries. The boundary conditions have been demonstrated to considerably affect the unsteady vortex structures. A special case is formulated for a potential force field using the stress tensor that governs the equilibrium. This makes it possible to describe complex motion in liquids without using an intricate form of the Navier–Stokes equations for vortex structures. More... »

PAGES

906-915

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s004060152112003x

DOI

http://dx.doi.org/10.1134/s004060152112003x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1143980436


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Brno University of Technology, 61669, Brno, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.4994.0", 
          "name": [
            "Brno University of Technology, 61669, Brno, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fialov\u00e1", 
        "givenName": "S.", 
        "id": "sg:person.07745177420.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07745177420.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brno University of Technology, 61669, Brno, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.4994.0", 
          "name": [
            "Brno University of Technology, 61669, Brno, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pochyl\u00fd", 
        "givenName": "F.", 
        "id": "sg:person.010104422773.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010104422773.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research University Moscow Power Engineering Institute, 111250, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77852.3f", 
          "name": [
            "National Research University Moscow Power Engineering Institute, 111250, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Volkov", 
        "givenName": "A. V.", 
        "id": "sg:person.010345121105.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010345121105.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research University Moscow Power Engineering Institute, 111250, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77852.3f", 
          "name": [
            "National Research University Moscow Power Engineering Institute, 111250, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ryzhenkov", 
        "givenName": "A. V.", 
        "id": "sg:person.010050305147.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010050305147.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research University Moscow Power Engineering Institute, 111250, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77852.3f", 
          "name": [
            "National Research University Moscow Power Engineering Institute, 111250, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Druzhinin", 
        "givenName": "A. A.", 
        "id": "sg:person.010710416744.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010710416744.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1023097018446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003108288", 
          "https://doi.org/10.1023/a:1023097018446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-63970-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091364697", 
          "https://doi.org/10.1007/978-3-319-63970-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-70031-1_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101396624", 
          "https://doi.org/10.1007/978-3-319-70031-1_3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-12-17", 
    "datePublishedReg": "2021-12-17", 
    "description": "The main concern of this paper is fundamental research into an acute problem arising in the operation of hydraulic turbines, namely, the formation of a vortex core downstream of the impeller. It is noted that, at present, the operating range of these machines has to be extended due to the change in power network loads in daily and seasonal cycles, thereby increasing the time of hydraulic turbines' operation under off-design or undesirable conditions, including those involving the risk of formation of a vortex of varying intensity. To describe this complex fluid flow, a mathematical model of the vortex core flow downstream of the hydraulic turbine\u2019s impeller was developed. This paper focuses on the fundamental issues encountered in developing the mathematical model. The methods are presented for simplifying the formulation of equations describing the structure of vortex rope formed in the flowpath. In this case, the equations of mathematical physics containing a dependent variable and taking the form of the Navier\u2013Stokes equations when applied fluids flows were employed. They describe the time changes of the selected parameters in a controlled volume induced by the flow through the volume boundaries. The boundary conditions have been demonstrated to considerably affect the unsteady vortex structures. A special case is formulated for a potential force field using the stress tensor that governs the equilibrium. This makes it possible to describe complex motion in liquids without using an intricate form of the Navier\u2013Stokes equations for vortex structures.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s004060152112003x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136458", 
        "issn": [
          "0040-6015", 
          "1555-6301"
        ], 
        "name": "Thermal Engineering", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "68"
      }
    ], 
    "keywords": [
      "Navier-Stokes equations", 
      "mathematical model", 
      "hydraulic turbine", 
      "vortex structures", 
      "fluid flow", 
      "calculation of flow", 
      "formulation of equations", 
      "complex fluid flow", 
      "mathematical physics", 
      "potential force field", 
      "hydraulic turbine operation", 
      "unsteady vortex structures", 
      "vortex core", 
      "equations", 
      "special case", 
      "stress tensor", 
      "turbine operation", 
      "boundary conditions", 
      "vortex rope", 
      "turbine impeller", 
      "operating range", 
      "flow downstream", 
      "volume boundaries", 
      "complex motion", 
      "impeller", 
      "flow paths", 
      "turbine", 
      "force field", 
      "flow", 
      "intricate forms", 
      "fundamental research", 
      "time changes", 
      "physics", 
      "operation", 
      "fundamental issues", 
      "model", 
      "tensor", 
      "undesirable conditions", 
      "network load", 
      "vortices", 
      "motion", 
      "simplification", 
      "load", 
      "formulation", 
      "risk of formation", 
      "dependent variable", 
      "main concern", 
      "structure", 
      "problem", 
      "calculations", 
      "field", 
      "liquid", 
      "parameters", 
      "conditions", 
      "equilibrium", 
      "rope", 
      "method", 
      "design", 
      "flowpaths", 
      "boundaries", 
      "machine", 
      "form", 
      "variables", 
      "path", 
      "seasonal cycle", 
      "cases", 
      "formation", 
      "downstream", 
      "range", 
      "cycle", 
      "core", 
      "volume", 
      "time", 
      "intensity", 
      "changes", 
      "issues", 
      "acute problems", 
      "present", 
      "research", 
      "concern", 
      "risk", 
      "paper"
    ], 
    "name": "Methods for Simplification of the Mathematical Model for the Calculation of Flows in the Flow Path of Hydraulic Turbines", 
    "pagination": "906-915", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1143980436"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s004060152112003x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s004060152112003x", 
      "https://app.dimensions.ai/details/publication/pub.1143980436"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_902.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s004060152112003x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s004060152112003x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s004060152112003x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s004060152112003x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s004060152112003x'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      22 PREDICATES      112 URIs      99 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s004060152112003x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 anzsrc-for:09
4 anzsrc-for:0915
5 schema:author Ne8cf0694c07541e99891d94ec88c340a
6 schema:citation sg:pub.10.1007/978-3-319-63970-3
7 sg:pub.10.1007/978-3-319-70031-1_3
8 sg:pub.10.1023/a:1023097018446
9 schema:datePublished 2021-12-17
10 schema:datePublishedReg 2021-12-17
11 schema:description The main concern of this paper is fundamental research into an acute problem arising in the operation of hydraulic turbines, namely, the formation of a vortex core downstream of the impeller. It is noted that, at present, the operating range of these machines has to be extended due to the change in power network loads in daily and seasonal cycles, thereby increasing the time of hydraulic turbines' operation under off-design or undesirable conditions, including those involving the risk of formation of a vortex of varying intensity. To describe this complex fluid flow, a mathematical model of the vortex core flow downstream of the hydraulic turbine’s impeller was developed. This paper focuses on the fundamental issues encountered in developing the mathematical model. The methods are presented for simplifying the formulation of equations describing the structure of vortex rope formed in the flowpath. In this case, the equations of mathematical physics containing a dependent variable and taking the form of the Navier–Stokes equations when applied fluids flows were employed. They describe the time changes of the selected parameters in a controlled volume induced by the flow through the volume boundaries. The boundary conditions have been demonstrated to considerably affect the unsteady vortex structures. A special case is formulated for a potential force field using the stress tensor that governs the equilibrium. This makes it possible to describe complex motion in liquids without using an intricate form of the Navier–Stokes equations for vortex structures.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N893c456d2eab4e418430289cce78b1f9
16 Ne9d9f7d5e7054172968a2eba9eb1d387
17 sg:journal.1136458
18 schema:keywords Navier-Stokes equations
19 acute problems
20 boundaries
21 boundary conditions
22 calculation of flow
23 calculations
24 cases
25 changes
26 complex fluid flow
27 complex motion
28 concern
29 conditions
30 core
31 cycle
32 dependent variable
33 design
34 downstream
35 equations
36 equilibrium
37 field
38 flow
39 flow downstream
40 flow paths
41 flowpaths
42 fluid flow
43 force field
44 form
45 formation
46 formulation
47 formulation of equations
48 fundamental issues
49 fundamental research
50 hydraulic turbine
51 hydraulic turbine operation
52 impeller
53 intensity
54 intricate forms
55 issues
56 liquid
57 load
58 machine
59 main concern
60 mathematical model
61 mathematical physics
62 method
63 model
64 motion
65 network load
66 operating range
67 operation
68 paper
69 parameters
70 path
71 physics
72 potential force field
73 present
74 problem
75 range
76 research
77 risk
78 risk of formation
79 rope
80 seasonal cycle
81 simplification
82 special case
83 stress tensor
84 structure
85 tensor
86 time
87 time changes
88 turbine
89 turbine impeller
90 turbine operation
91 undesirable conditions
92 unsteady vortex structures
93 variables
94 volume
95 volume boundaries
96 vortex core
97 vortex rope
98 vortex structures
99 vortices
100 schema:name Methods for Simplification of the Mathematical Model for the Calculation of Flows in the Flow Path of Hydraulic Turbines
101 schema:pagination 906-915
102 schema:productId N5a6d514e634a497e83d6b61314f79b9f
103 N648b23bf4f034ff3b1d6aee958c6cc39
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143980436
105 https://doi.org/10.1134/s004060152112003x
106 schema:sdDatePublished 2022-05-20T07:38
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher Nefa68ecfc6d6434285fb73b97fe89abd
109 schema:url https://doi.org/10.1134/s004060152112003x
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N160ba80c37984db8a046460d58d71888 rdf:first sg:person.010050305147.09
114 rdf:rest Nee89136737f541d9a6cf47b6b869a81e
115 N5a6d514e634a497e83d6b61314f79b9f schema:name doi
116 schema:value 10.1134/s004060152112003x
117 rdf:type schema:PropertyValue
118 N648b23bf4f034ff3b1d6aee958c6cc39 schema:name dimensions_id
119 schema:value pub.1143980436
120 rdf:type schema:PropertyValue
121 N893c456d2eab4e418430289cce78b1f9 schema:volumeNumber 68
122 rdf:type schema:PublicationVolume
123 Nabf10e78ad4743a2986b2ef7c4eeec1c rdf:first sg:person.010345121105.14
124 rdf:rest N160ba80c37984db8a046460d58d71888
125 Ne8cf0694c07541e99891d94ec88c340a rdf:first sg:person.07745177420.91
126 rdf:rest Nf1eb4ffa338e4c138a5e090c6171d0a5
127 Ne9d9f7d5e7054172968a2eba9eb1d387 schema:issueNumber 12
128 rdf:type schema:PublicationIssue
129 Nee89136737f541d9a6cf47b6b869a81e rdf:first sg:person.010710416744.79
130 rdf:rest rdf:nil
131 Nefa68ecfc6d6434285fb73b97fe89abd schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 Nf1eb4ffa338e4c138a5e090c6171d0a5 rdf:first sg:person.010104422773.44
134 rdf:rest Nabf10e78ad4743a2986b2ef7c4eeec1c
135 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
136 schema:name Mathematical Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
139 schema:name Pure Mathematics
140 rdf:type schema:DefinedTerm
141 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
142 schema:name Engineering
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
145 schema:name Interdisciplinary Engineering
146 rdf:type schema:DefinedTerm
147 sg:journal.1136458 schema:issn 0040-6015
148 1555-6301
149 schema:name Thermal Engineering
150 schema:publisher Pleiades Publishing
151 rdf:type schema:Periodical
152 sg:person.010050305147.09 schema:affiliation grid-institutes:grid.77852.3f
153 schema:familyName Ryzhenkov
154 schema:givenName A. V.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010050305147.09
156 rdf:type schema:Person
157 sg:person.010104422773.44 schema:affiliation grid-institutes:grid.4994.0
158 schema:familyName Pochylý
159 schema:givenName F.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010104422773.44
161 rdf:type schema:Person
162 sg:person.010345121105.14 schema:affiliation grid-institutes:grid.77852.3f
163 schema:familyName Volkov
164 schema:givenName A. V.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010345121105.14
166 rdf:type schema:Person
167 sg:person.010710416744.79 schema:affiliation grid-institutes:grid.77852.3f
168 schema:familyName Druzhinin
169 schema:givenName A. A.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010710416744.79
171 rdf:type schema:Person
172 sg:person.07745177420.91 schema:affiliation grid-institutes:grid.4994.0
173 schema:familyName Fialová
174 schema:givenName S.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07745177420.91
176 rdf:type schema:Person
177 sg:pub.10.1007/978-3-319-63970-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091364697
178 https://doi.org/10.1007/978-3-319-63970-3
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/978-3-319-70031-1_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101396624
181 https://doi.org/10.1007/978-3-319-70031-1_3
182 rdf:type schema:CreativeWork
183 sg:pub.10.1023/a:1023097018446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003108288
184 https://doi.org/10.1023/a:1023097018446
185 rdf:type schema:CreativeWork
186 grid-institutes:grid.4994.0 schema:alternateName Brno University of Technology, 61669, Brno, Czech Republic
187 schema:name Brno University of Technology, 61669, Brno, Czech Republic
188 rdf:type schema:Organization
189 grid-institutes:grid.77852.3f schema:alternateName National Research University Moscow Power Engineering Institute, 111250, Moscow, Russia
190 schema:name National Research University Moscow Power Engineering Institute, 111250, Moscow, Russia
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...