Ontology type: schema:ScholarlyArticle
2015-04-16
AUTHORSI. A. Sultanguzin, A. V. Fedyukhin, S. Yu. Kurzanov, A. M. Gyulmaliev, T. A. Stepanova, V. A. Tumanovsky, D. P. Titov
ABSTRACTTheoretical principles of using solid fuel for organizing independent power supply to small settlements and industrial consumers are considered. Thermogravimetric experiments have been carried out for a few types of wood with determining the universal kinetic parameters characterizing the pyrolysis process. A procedure for describing the solid fuel thermal decomposition process has been proposed that is based on writing the equations of four independent parallel thermal decomposition reactions for each component of the initial raw material. A software package has been developed using which the calorific value, composition, and volume of the gas produced in the thermal conversion of solid fuels can be estimated. The impact of operating parameters on the synthesis gas composition has been evaluated. It has been found that increasing the thermal conversion temperature results in a higher calorific value of the obtained gas per unit weight of the feedstock. A qualitative and quantitative comparison of the computational model and the results obtained during experimental studies on the existing gasifier has been carried out. It is shown that the parameters of gas obtained on the test bench are consistent with the calculated ones in both the amount of gas and its chemical energy. The combined-cycle power plant flow chart involving the biomass gasification process has been numerically simulated in the Aspen Plus computer program, and calculations aimed at determining the optimal operating parameters of different thermal process circuit components and of the entire CCP system were performed. More... »
PAGES359-364
http://scigraph.springernature.com/pub.10.1134/s0040601515050110
DOIhttp://dx.doi.org/10.1134/s0040601515050110
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1029075932
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Interdisciplinary Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Moscow Power Engineering Institute National Research University, Krasnokazarmennaya ul. 14, 111250, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.77852.3f",
"name": [
"Moscow Power Engineering Institute National Research University, Krasnokazarmennaya ul. 14, 111250, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Sultanguzin",
"givenName": "I. A.",
"id": "sg:person.015575302625.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015575302625.94"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Moscow Power Engineering Institute National Research University, Krasnokazarmennaya ul. 14, 111250, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.77852.3f",
"name": [
"Moscow Power Engineering Institute National Research University, Krasnokazarmennaya ul. 14, 111250, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Fedyukhin",
"givenName": "A. V.",
"id": "sg:person.07667612025.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07667612025.15"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Moscow Power Engineering Institute National Research University, Krasnokazarmennaya ul. 14, 111250, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.77852.3f",
"name": [
"Moscow Power Engineering Institute National Research University, Krasnokazarmennaya ul. 14, 111250, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Kurzanov",
"givenName": "S. Yu.",
"id": "sg:person.015213343127.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015213343127.26"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr., 29, 119991, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.423490.8",
"name": [
"Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr., 29, 119991, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Gyulmaliev",
"givenName": "A. M.",
"id": "sg:person.011577241722.70",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011577241722.70"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Moscow Power Engineering Institute National Research University, Krasnokazarmennaya ul. 14, 111250, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.77852.3f",
"name": [
"Moscow Power Engineering Institute National Research University, Krasnokazarmennaya ul. 14, 111250, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Stepanova",
"givenName": "T. A.",
"id": "sg:person.015054162206.61",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015054162206.61"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Moscow Power Engineering Institute National Research University, Krasnokazarmennaya ul. 14, 111250, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.77852.3f",
"name": [
"Moscow Power Engineering Institute National Research University, Krasnokazarmennaya ul. 14, 111250, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Tumanovsky",
"givenName": "V. A.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Moscow Power Engineering Institute National Research University, Krasnokazarmennaya ul. 14, 111250, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.77852.3f",
"name": [
"Moscow Power Engineering Institute National Research University, Krasnokazarmennaya ul. 14, 111250, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Titov",
"givenName": "D. P.",
"id": "sg:person.016045066720.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016045066720.35"
],
"type": "Person"
}
],
"datePublished": "2015-04-16",
"datePublishedReg": "2015-04-16",
"description": "Theoretical principles of using solid fuel for organizing independent power supply to small settlements and industrial consumers are considered. Thermogravimetric experiments have been carried out for a few types of wood with determining the universal kinetic parameters characterizing the pyrolysis process. A procedure for describing the solid fuel thermal decomposition process has been proposed that is based on writing the equations of four independent parallel thermal decomposition reactions for each component of the initial raw material. A software package has been developed using which the calorific value, composition, and volume of the gas produced in the thermal conversion of solid fuels can be estimated. The impact of operating parameters on the synthesis gas composition has been evaluated. It has been found that increasing the thermal conversion temperature results in a higher calorific value of the obtained gas per unit weight of the feedstock. A qualitative and quantitative comparison of the computational model and the results obtained during experimental studies on the existing gasifier has been carried out. It is shown that the parameters of gas obtained on the test bench are consistent with the calculated ones in both the amount of gas and its chemical energy. The combined-cycle power plant flow chart involving the biomass gasification process has been numerically simulated in the Aspen Plus computer program, and calculations aimed at determining the optimal operating parameters of different thermal process circuit components and of the entire CCP system were performed.",
"genre": "article",
"id": "sg:pub.10.1134/s0040601515050110",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136458",
"issn": [
"0040-6015",
"1555-6301"
],
"name": "Thermal Engineering",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "62"
}
],
"keywords": [
"solid fuels",
"independent power supply system",
"calorific value",
"biomass gasification process",
"thermal conversion technologies",
"power supply system",
"independent power supply",
"synthesis gas composition",
"optimal operating parameters",
"high calorific value",
"gasification process",
"amount of gas",
"power supply",
"operating parameters",
"initial raw material",
"test bench",
"pyrolysis process",
"thermal decomposition process",
"conversion technologies",
"supply system",
"CCP system",
"industrial consumers",
"gas composition",
"thermogravimetric experiments",
"thermal conversion",
"circuit components",
"unit weight",
"thermal conversion temperature",
"parameters of gas",
"conversion temperature",
"raw materials",
"chemical energy",
"thermal decomposition reaction",
"gas",
"fuel",
"type of wood",
"experimental study",
"decomposition reaction",
"decomposition process",
"gasifier",
"flow chart",
"parameters",
"computational model",
"kinetic parameters",
"software package",
"quantitative comparison",
"feedstock",
"process",
"bench",
"computer program",
"temperature",
"materials",
"small settlements",
"aspen",
"system",
"energy",
"technology",
"composition",
"equations",
"components",
"theoretical principles",
"package",
"supply",
"wood",
"conversion",
"values",
"calculations",
"experiments",
"model",
"amount",
"prospects",
"volume",
"results",
"comparison",
"principles",
"settlement",
"one",
"procedure",
"reaction",
"types",
"impact",
"charts",
"development",
"basis",
"consumers",
"study",
"weight",
"program"
],
"name": "Prospects for the development of independent power supply systems on the basis of solid fuel thermal conversion technology",
"pagination": "359-364",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1029075932"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s0040601515050110"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s0040601515050110",
"https://app.dimensions.ai/details/publication/pub.1029075932"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:02",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_652.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s0040601515050110"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040601515050110'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040601515050110'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040601515050110'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040601515050110'
This table displays all metadata directly associated to this object as RDF triples.
193 TRIPLES
20 PREDICATES
113 URIs
104 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s0040601515050110 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0904 |
3 | ″ | ″ | anzsrc-for:0915 |
4 | ″ | schema:author | Nde34739379854b7e818b2fc16910d6f7 |
5 | ″ | schema:datePublished | 2015-04-16 |
6 | ″ | schema:datePublishedReg | 2015-04-16 |
7 | ″ | schema:description | Theoretical principles of using solid fuel for organizing independent power supply to small settlements and industrial consumers are considered. Thermogravimetric experiments have been carried out for a few types of wood with determining the universal kinetic parameters characterizing the pyrolysis process. A procedure for describing the solid fuel thermal decomposition process has been proposed that is based on writing the equations of four independent parallel thermal decomposition reactions for each component of the initial raw material. A software package has been developed using which the calorific value, composition, and volume of the gas produced in the thermal conversion of solid fuels can be estimated. The impact of operating parameters on the synthesis gas composition has been evaluated. It has been found that increasing the thermal conversion temperature results in a higher calorific value of the obtained gas per unit weight of the feedstock. A qualitative and quantitative comparison of the computational model and the results obtained during experimental studies on the existing gasifier has been carried out. It is shown that the parameters of gas obtained on the test bench are consistent with the calculated ones in both the amount of gas and its chemical energy. The combined-cycle power plant flow chart involving the biomass gasification process has been numerically simulated in the Aspen Plus computer program, and calculations aimed at determining the optimal operating parameters of different thermal process circuit components and of the entire CCP system were performed. |
8 | ″ | schema:genre | article |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N1644b149a4a24311a6aa6cbbfd8cfdd9 |
11 | ″ | ″ | Nc8bdcc74228e4262a05bb7318c22d23d |
12 | ″ | ″ | sg:journal.1136458 |
13 | ″ | schema:keywords | CCP system |
14 | ″ | ″ | amount |
15 | ″ | ″ | amount of gas |
16 | ″ | ″ | aspen |
17 | ″ | ″ | basis |
18 | ″ | ″ | bench |
19 | ″ | ″ | biomass gasification process |
20 | ″ | ″ | calculations |
21 | ″ | ″ | calorific value |
22 | ″ | ″ | charts |
23 | ″ | ″ | chemical energy |
24 | ″ | ″ | circuit components |
25 | ″ | ″ | comparison |
26 | ″ | ″ | components |
27 | ″ | ″ | composition |
28 | ″ | ″ | computational model |
29 | ″ | ″ | computer program |
30 | ″ | ″ | consumers |
31 | ″ | ″ | conversion |
32 | ″ | ″ | conversion technologies |
33 | ″ | ″ | conversion temperature |
34 | ″ | ″ | decomposition process |
35 | ″ | ″ | decomposition reaction |
36 | ″ | ″ | development |
37 | ″ | ″ | energy |
38 | ″ | ″ | equations |
39 | ″ | ″ | experimental study |
40 | ″ | ″ | experiments |
41 | ″ | ″ | feedstock |
42 | ″ | ″ | flow chart |
43 | ″ | ″ | fuel |
44 | ″ | ″ | gas |
45 | ″ | ″ | gas composition |
46 | ″ | ″ | gasification process |
47 | ″ | ″ | gasifier |
48 | ″ | ″ | high calorific value |
49 | ″ | ″ | impact |
50 | ″ | ″ | independent power supply |
51 | ″ | ″ | independent power supply system |
52 | ″ | ″ | industrial consumers |
53 | ″ | ″ | initial raw material |
54 | ″ | ″ | kinetic parameters |
55 | ″ | ″ | materials |
56 | ″ | ″ | model |
57 | ″ | ″ | one |
58 | ″ | ″ | operating parameters |
59 | ″ | ″ | optimal operating parameters |
60 | ″ | ″ | package |
61 | ″ | ″ | parameters |
62 | ″ | ″ | parameters of gas |
63 | ″ | ″ | power supply |
64 | ″ | ″ | power supply system |
65 | ″ | ″ | principles |
66 | ″ | ″ | procedure |
67 | ″ | ″ | process |
68 | ″ | ″ | program |
69 | ″ | ″ | prospects |
70 | ″ | ″ | pyrolysis process |
71 | ″ | ″ | quantitative comparison |
72 | ″ | ″ | raw materials |
73 | ″ | ″ | reaction |
74 | ″ | ″ | results |
75 | ″ | ″ | settlement |
76 | ″ | ″ | small settlements |
77 | ″ | ″ | software package |
78 | ″ | ″ | solid fuels |
79 | ″ | ″ | study |
80 | ″ | ″ | supply |
81 | ″ | ″ | supply system |
82 | ″ | ″ | synthesis gas composition |
83 | ″ | ″ | system |
84 | ″ | ″ | technology |
85 | ″ | ″ | temperature |
86 | ″ | ″ | test bench |
87 | ″ | ″ | theoretical principles |
88 | ″ | ″ | thermal conversion |
89 | ″ | ″ | thermal conversion technologies |
90 | ″ | ″ | thermal conversion temperature |
91 | ″ | ″ | thermal decomposition process |
92 | ″ | ″ | thermal decomposition reaction |
93 | ″ | ″ | thermogravimetric experiments |
94 | ″ | ″ | type of wood |
95 | ″ | ″ | types |
96 | ″ | ″ | unit weight |
97 | ″ | ″ | values |
98 | ″ | ″ | volume |
99 | ″ | ″ | weight |
100 | ″ | ″ | wood |
101 | ″ | schema:name | Prospects for the development of independent power supply systems on the basis of solid fuel thermal conversion technology |
102 | ″ | schema:pagination | 359-364 |
103 | ″ | schema:productId | N22aa768d082c4a85a76a31d91b538cc2 |
104 | ″ | ″ | Nba529c8197dc4bdb917244f84cde8a62 |
105 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1029075932 |
106 | ″ | ″ | https://doi.org/10.1134/s0040601515050110 |
107 | ″ | schema:sdDatePublished | 2022-08-04T17:02 |
108 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
109 | ″ | schema:sdPublisher | Na57df157e8034404be5224bde899fb0e |
110 | ″ | schema:url | https://doi.org/10.1134/s0040601515050110 |
111 | ″ | sgo:license | sg:explorer/license/ |
112 | ″ | sgo:sdDataset | articles |
113 | ″ | rdf:type | schema:ScholarlyArticle |
114 | N001655836fb947c2a19edb214b39feb4 | schema:affiliation | grid-institutes:grid.77852.3f |
115 | ″ | schema:familyName | Tumanovsky |
116 | ″ | schema:givenName | V. A. |
117 | ″ | rdf:type | schema:Person |
118 | N1644b149a4a24311a6aa6cbbfd8cfdd9 | schema:issueNumber | 5 |
119 | ″ | rdf:type | schema:PublicationIssue |
120 | N22aa768d082c4a85a76a31d91b538cc2 | schema:name | doi |
121 | ″ | schema:value | 10.1134/s0040601515050110 |
122 | ″ | rdf:type | schema:PropertyValue |
123 | N30748bdf85dd44d09f554058d51e4fcc | rdf:first | sg:person.07667612025.15 |
124 | ″ | rdf:rest | Na2bec99b951846429a3de79423159d5a |
125 | N783ba43bff8e46a8ad715281a7cb428d | rdf:first | sg:person.016045066720.35 |
126 | ″ | rdf:rest | rdf:nil |
127 | N8f67da9339304180b25f609af42f7b8c | rdf:first | sg:person.015054162206.61 |
128 | ″ | rdf:rest | N9fa68b6615a94870a407b0103510490c |
129 | N9fa68b6615a94870a407b0103510490c | rdf:first | N001655836fb947c2a19edb214b39feb4 |
130 | ″ | rdf:rest | N783ba43bff8e46a8ad715281a7cb428d |
131 | Na2bec99b951846429a3de79423159d5a | rdf:first | sg:person.015213343127.26 |
132 | ″ | rdf:rest | Nad8ceec14ac844e2b3af7e551c401792 |
133 | Na57df157e8034404be5224bde899fb0e | schema:name | Springer Nature - SN SciGraph project |
134 | ″ | rdf:type | schema:Organization |
135 | Nad8ceec14ac844e2b3af7e551c401792 | rdf:first | sg:person.011577241722.70 |
136 | ″ | rdf:rest | N8f67da9339304180b25f609af42f7b8c |
137 | Nba529c8197dc4bdb917244f84cde8a62 | schema:name | dimensions_id |
138 | ″ | schema:value | pub.1029075932 |
139 | ″ | rdf:type | schema:PropertyValue |
140 | Nc8bdcc74228e4262a05bb7318c22d23d | schema:volumeNumber | 62 |
141 | ″ | rdf:type | schema:PublicationVolume |
142 | Nde34739379854b7e818b2fc16910d6f7 | rdf:first | sg:person.015575302625.94 |
143 | ″ | rdf:rest | N30748bdf85dd44d09f554058d51e4fcc |
144 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
145 | ″ | schema:name | Engineering |
146 | ″ | rdf:type | schema:DefinedTerm |
147 | anzsrc-for:0904 | schema:inDefinedTermSet | anzsrc-for: |
148 | ″ | schema:name | Chemical Engineering |
149 | ″ | rdf:type | schema:DefinedTerm |
150 | anzsrc-for:0915 | schema:inDefinedTermSet | anzsrc-for: |
151 | ″ | schema:name | Interdisciplinary Engineering |
152 | ″ | rdf:type | schema:DefinedTerm |
153 | sg:journal.1136458 | schema:issn | 0040-6015 |
154 | ″ | ″ | 1555-6301 |
155 | ″ | schema:name | Thermal Engineering |
156 | ″ | schema:publisher | Pleiades Publishing |
157 | ″ | rdf:type | schema:Periodical |
158 | sg:person.011577241722.70 | schema:affiliation | grid-institutes:grid.423490.8 |
159 | ″ | schema:familyName | Gyulmaliev |
160 | ″ | schema:givenName | A. M. |
161 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011577241722.70 |
162 | ″ | rdf:type | schema:Person |
163 | sg:person.015054162206.61 | schema:affiliation | grid-institutes:grid.77852.3f |
164 | ″ | schema:familyName | Stepanova |
165 | ″ | schema:givenName | T. A. |
166 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015054162206.61 |
167 | ″ | rdf:type | schema:Person |
168 | sg:person.015213343127.26 | schema:affiliation | grid-institutes:grid.77852.3f |
169 | ″ | schema:familyName | Kurzanov |
170 | ″ | schema:givenName | S. Yu. |
171 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015213343127.26 |
172 | ″ | rdf:type | schema:Person |
173 | sg:person.015575302625.94 | schema:affiliation | grid-institutes:grid.77852.3f |
174 | ″ | schema:familyName | Sultanguzin |
175 | ″ | schema:givenName | I. A. |
176 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015575302625.94 |
177 | ″ | rdf:type | schema:Person |
178 | sg:person.016045066720.35 | schema:affiliation | grid-institutes:grid.77852.3f |
179 | ″ | schema:familyName | Titov |
180 | ″ | schema:givenName | D. P. |
181 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016045066720.35 |
182 | ″ | rdf:type | schema:Person |
183 | sg:person.07667612025.15 | schema:affiliation | grid-institutes:grid.77852.3f |
184 | ″ | schema:familyName | Fedyukhin |
185 | ″ | schema:givenName | A. V. |
186 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07667612025.15 |
187 | ″ | rdf:type | schema:Person |
188 | grid-institutes:grid.423490.8 | schema:alternateName | Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr., 29, 119991, Moscow, Russia |
189 | ″ | schema:name | Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr., 29, 119991, Moscow, Russia |
190 | ″ | rdf:type | schema:Organization |
191 | grid-institutes:grid.77852.3f | schema:alternateName | Moscow Power Engineering Institute National Research University, Krasnokazarmennaya ul. 14, 111250, Moscow, Russia |
192 | ″ | schema:name | Moscow Power Engineering Institute National Research University, Krasnokazarmennaya ul. 14, 111250, Moscow, Russia |
193 | ″ | rdf:type | schema:Organization |