Technology for processing natural energy resources based on the concept of optimal chemical engineering system organization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03

AUTHORS

V. A. Naletov, V. A. Kolesnikov, M. B. Glebov, A. Yu. Naletov, V. B. Glebov

ABSTRACT

The problem of coordinating the target processes within a virtual system followed by the addition of corresponding heat exchanger and utility elements to the above processes has been considered. The problem has been solved using a sequential synthesis algorithm that involves selecting the target processes of the system, their optimal coordination within the system that combines the target processes, the selection of the heat exchanger elements and optimal load distribution, and the selection of optimal system topology. The functioning of the algorithm has been demonstrated based on an example of a unified system comprised of lignite gasification and the water-gas shift reaction of the synthesis gas in order to achieve the key component ratio H2: CO = 2: 1 for the production of methanol and higher alcohols. A specific feature of the algorithm proposed for the example under consideration is that it does not have feedback, since optimal solutions are chosen at every step of the process of increasing the system complexity element-by-element according to the corresponding organization criteria, which take this process into account. More... »

PAGES

142-150

References to SciGraph publications

  • 2011-10-13. Information-thermodynamic principle of the organization of chemical engineering systems in THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0040579517020051

    DOI

    http://dx.doi.org/10.1134/s0040579517020051

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085050148


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.39572.3a", 
              "name": [
                "Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Naletov", 
            "givenName": "V. A.", 
            "id": "sg:person.015576745360.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015576745360.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.39572.3a", 
              "name": [
                "Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kolesnikov", 
            "givenName": "V. A.", 
            "id": "sg:person.011667347513.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011667347513.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.39572.3a", 
              "name": [
                "Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glebov", 
            "givenName": "M. B.", 
            "id": "sg:person.016025443041.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016025443041.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.39572.3a", 
              "name": [
                "Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Naletov", 
            "givenName": "A. Yu.", 
            "id": "sg:person.014507624441.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014507624441.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "MIFI National Nuclear Research University, 115409, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "MIFI National Nuclear Research University, 115409, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glebov", 
            "givenName": "V. B.", 
            "id": "sg:person.015752441415.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752441415.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s0040579511050289", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044456607", 
              "https://doi.org/10.1134/s0040579511050289"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-03", 
        "datePublishedReg": "2017-03-01", 
        "description": "The problem of coordinating the target processes within a virtual system followed by the addition of corresponding heat exchanger and utility elements to the above processes has been considered. The problem has been solved using a sequential synthesis algorithm that involves selecting the target processes of the system, their optimal coordination within the system that combines the target processes, the selection of the heat exchanger elements and optimal load distribution, and the selection of optimal system topology. The functioning of the algorithm has been demonstrated based on an example of a unified system comprised of lignite gasification and the water-gas shift reaction of the synthesis gas in order to achieve the key component ratio H2: CO = 2: 1 for the production of methanol and higher alcohols. A specific feature of the algorithm proposed for the example under consideration is that it does not have feedback, since optimal solutions are chosen at every step of the process of increasing the system complexity element-by-element according to the corresponding organization criteria, which take this process into account.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s0040579517020051", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136110", 
            "issn": [
              "0040-5795", 
              "1608-3431"
            ], 
            "name": "Theoretical Foundations of Chemical Engineering", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "51"
          }
        ], 
        "keywords": [
          "heat exchanger elements", 
          "optimal system topology", 
          "natural energy resources", 
          "exchanger elements", 
          "heat exchanger", 
          "production of methanol", 
          "water-gas shift reaction", 
          "lignite gasification", 
          "sequential synthesis algorithm", 
          "optimal load distribution", 
          "synthesis gas", 
          "energy resources", 
          "load distribution", 
          "shift reaction", 
          "system topology", 
          "utility elements", 
          "ratio H2", 
          "target process", 
          "optimal coordination", 
          "gasification", 
          "virtual system", 
          "above processes", 
          "exchanger", 
          "process", 
          "gas", 
          "system", 
          "optimal solution", 
          "elements", 
          "technology", 
          "algorithm", 
          "H2", 
          "unified system", 
          "specific features", 
          "CO", 
          "solution", 
          "problem", 
          "distribution", 
          "example", 
          "order", 
          "higher alcohols", 
          "topology", 
          "methanol", 
          "synthesis algorithm", 
          "step", 
          "account", 
          "consideration", 
          "production", 
          "addition", 
          "concept", 
          "complexity elements", 
          "selection", 
          "features", 
          "feedback", 
          "reaction", 
          "criteria", 
          "resources", 
          "system organization", 
          "alcohol", 
          "coordination", 
          "functioning", 
          "organization", 
          "Organization criteria", 
          "key component ratio H2", 
          "component ratio H2", 
          "system complexity element", 
          "corresponding organization criteria", 
          "optimal chemical engineering system organization", 
          "chemical engineering system organization", 
          "engineering system organization"
        ], 
        "name": "Technology for processing natural energy resources based on the concept of optimal chemical engineering system organization", 
        "pagination": "142-150", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085050148"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0040579517020051"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0040579517020051", 
          "https://app.dimensions.ai/details/publication/pub.1085050148"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_736.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s0040579517020051"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040579517020051'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040579517020051'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040579517020051'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040579517020051'


     

    This table displays all metadata directly associated to this object as RDF triples.

    162 TRIPLES      22 PREDICATES      96 URIs      87 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0040579517020051 schema:about anzsrc-for:09
    2 anzsrc-for:0904
    3 schema:author N8da0038c4fe54890857f29610b20587e
    4 schema:citation sg:pub.10.1134/s0040579511050289
    5 schema:datePublished 2017-03
    6 schema:datePublishedReg 2017-03-01
    7 schema:description The problem of coordinating the target processes within a virtual system followed by the addition of corresponding heat exchanger and utility elements to the above processes has been considered. The problem has been solved using a sequential synthesis algorithm that involves selecting the target processes of the system, their optimal coordination within the system that combines the target processes, the selection of the heat exchanger elements and optimal load distribution, and the selection of optimal system topology. The functioning of the algorithm has been demonstrated based on an example of a unified system comprised of lignite gasification and the water-gas shift reaction of the synthesis gas in order to achieve the key component ratio H2: CO = 2: 1 for the production of methanol and higher alcohols. A specific feature of the algorithm proposed for the example under consideration is that it does not have feedback, since optimal solutions are chosen at every step of the process of increasing the system complexity element-by-element according to the corresponding organization criteria, which take this process into account.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N221bef695bfa4129b49169d9fe6c2354
    12 N65f518b459da4797a5357bf5d8642556
    13 sg:journal.1136110
    14 schema:keywords CO
    15 H2
    16 Organization criteria
    17 above processes
    18 account
    19 addition
    20 alcohol
    21 algorithm
    22 chemical engineering system organization
    23 complexity elements
    24 component ratio H2
    25 concept
    26 consideration
    27 coordination
    28 corresponding organization criteria
    29 criteria
    30 distribution
    31 elements
    32 energy resources
    33 engineering system organization
    34 example
    35 exchanger
    36 exchanger elements
    37 features
    38 feedback
    39 functioning
    40 gas
    41 gasification
    42 heat exchanger
    43 heat exchanger elements
    44 higher alcohols
    45 key component ratio H2
    46 lignite gasification
    47 load distribution
    48 methanol
    49 natural energy resources
    50 optimal chemical engineering system organization
    51 optimal coordination
    52 optimal load distribution
    53 optimal solution
    54 optimal system topology
    55 order
    56 organization
    57 problem
    58 process
    59 production
    60 production of methanol
    61 ratio H2
    62 reaction
    63 resources
    64 selection
    65 sequential synthesis algorithm
    66 shift reaction
    67 solution
    68 specific features
    69 step
    70 synthesis algorithm
    71 synthesis gas
    72 system
    73 system complexity element
    74 system organization
    75 system topology
    76 target process
    77 technology
    78 topology
    79 unified system
    80 utility elements
    81 virtual system
    82 water-gas shift reaction
    83 schema:name Technology for processing natural energy resources based on the concept of optimal chemical engineering system organization
    84 schema:pagination 142-150
    85 schema:productId Ned7e846ef2a14d27aba7ab746a12d8ba
    86 Nf94175f3dd734f9e861b2cca74fed454
    87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085050148
    88 https://doi.org/10.1134/s0040579517020051
    89 schema:sdDatePublished 2021-11-01T18:30
    90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    91 schema:sdPublisher N5b1f75e6f33b4670a3d7255edf8dd802
    92 schema:url https://doi.org/10.1134/s0040579517020051
    93 sgo:license sg:explorer/license/
    94 sgo:sdDataset articles
    95 rdf:type schema:ScholarlyArticle
    96 N221bef695bfa4129b49169d9fe6c2354 schema:volumeNumber 51
    97 rdf:type schema:PublicationVolume
    98 N3794786699574483a297ee284f945b1a rdf:first sg:person.014507624441.79
    99 rdf:rest Nf366aea9f1b34da8acd3a0f7be3dab71
    100 N5b1f75e6f33b4670a3d7255edf8dd802 schema:name Springer Nature - SN SciGraph project
    101 rdf:type schema:Organization
    102 N65f518b459da4797a5357bf5d8642556 schema:issueNumber 2
    103 rdf:type schema:PublicationIssue
    104 N67ed8dbab4eb4f9dabdd56ee41e421fc rdf:first sg:person.016025443041.98
    105 rdf:rest N3794786699574483a297ee284f945b1a
    106 N8da0038c4fe54890857f29610b20587e rdf:first sg:person.015576745360.67
    107 rdf:rest N8f89f9c8bd624784815b25d6a8126252
    108 N8f89f9c8bd624784815b25d6a8126252 rdf:first sg:person.011667347513.40
    109 rdf:rest N67ed8dbab4eb4f9dabdd56ee41e421fc
    110 Ned7e846ef2a14d27aba7ab746a12d8ba schema:name dimensions_id
    111 schema:value pub.1085050148
    112 rdf:type schema:PropertyValue
    113 Nf366aea9f1b34da8acd3a0f7be3dab71 rdf:first sg:person.015752441415.48
    114 rdf:rest rdf:nil
    115 Nf94175f3dd734f9e861b2cca74fed454 schema:name doi
    116 schema:value 10.1134/s0040579517020051
    117 rdf:type schema:PropertyValue
    118 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Engineering
    120 rdf:type schema:DefinedTerm
    121 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Chemical Engineering
    123 rdf:type schema:DefinedTerm
    124 sg:journal.1136110 schema:issn 0040-5795
    125 1608-3431
    126 schema:name Theoretical Foundations of Chemical Engineering
    127 schema:publisher Pleiades Publishing
    128 rdf:type schema:Periodical
    129 sg:person.011667347513.40 schema:affiliation grid-institutes:grid.39572.3a
    130 schema:familyName Kolesnikov
    131 schema:givenName V. A.
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011667347513.40
    133 rdf:type schema:Person
    134 sg:person.014507624441.79 schema:affiliation grid-institutes:grid.39572.3a
    135 schema:familyName Naletov
    136 schema:givenName A. Yu.
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014507624441.79
    138 rdf:type schema:Person
    139 sg:person.015576745360.67 schema:affiliation grid-institutes:grid.39572.3a
    140 schema:familyName Naletov
    141 schema:givenName V. A.
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015576745360.67
    143 rdf:type schema:Person
    144 sg:person.015752441415.48 schema:affiliation grid-institutes:None
    145 schema:familyName Glebov
    146 schema:givenName V. B.
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752441415.48
    148 rdf:type schema:Person
    149 sg:person.016025443041.98 schema:affiliation grid-institutes:grid.39572.3a
    150 schema:familyName Glebov
    151 schema:givenName M. B.
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016025443041.98
    153 rdf:type schema:Person
    154 sg:pub.10.1134/s0040579511050289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044456607
    155 https://doi.org/10.1134/s0040579511050289
    156 rdf:type schema:CreativeWork
    157 grid-institutes:None schema:alternateName MIFI National Nuclear Research University, 115409, Moscow, Russia
    158 schema:name MIFI National Nuclear Research University, 115409, Moscow, Russia
    159 rdf:type schema:Organization
    160 grid-institutes:grid.39572.3a schema:alternateName Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia
    161 schema:name Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia
    162 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...