Hydrogen production in an environmental-friendly process by application of chemical looping combustion via Ni- and Fe-Based oxygen carriers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-11

AUTHORS

M. Abbasi, M. Farniei, M. R. Rahimpour, A. Shariati

ABSTRACT

In this research, application of chemical looping combustion (CLC) instead of furnace in a conventional steam reformer (CSR) assisted by Pd/Ag membranes for hydrogen production has been analyzed. Ni- and Fe-based oxygen carriers have been employed in CLC for carbon dioxide capture. A steady state one dimensional heterogeneous catalytic reaction model is applied to analyze the performance and applicability of proposed CLC-SRM configuration via different oxygen carriers. Simulation results show that for all types of used oxygen carriers combustion efficiency reaches to 1 in the fuel reactor (FR) part of CLC-SRM. In CLC-SRM, methane conversion increases from 26% in CSR to 33.7% and 30.87 with employing Ni- and Fe- based oxygen carriers respectively. In addition, hydrogen production increases from 3380 kmol h–1 in CSR to 4258 and 3948 kmol h–1 in CLC-SRM with employing Ni- and Fe-based oxygen carriers respectively. Increasing FR feed temperature in CLC-SRM via all types of oxygen carriers shows enhancement of methane conversion and hydrogen production in the SR side. By increasing FR feed temperature from 800–1000 K, hydrogen production can increases 41.36 and 33.08% by using Ni- and Fe- based oxygen carriers in comparison with CSR respectively. More... »

PAGES

884-900

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0040579515060019

DOI

http://dx.doi.org/10.1134/s0040579515060019

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045367044


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Persian Gulf University", 
          "id": "https://www.grid.ac/institutes/grid.412491.b", 
          "name": [
            "Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Persian Gulf University, 75169, Bushehr, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abbasi", 
        "givenName": "M.", 
        "id": "sg:person.011215463455.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011215463455.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shiraz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.444860.a", 
          "name": [
            "Department of Chemical Engineering, Shiraz University of Technology, 71555-313, Shiraz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Farniei", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shiraz University", 
          "id": "https://www.grid.ac/institutes/grid.412573.6", 
          "name": [
            "Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, 71345, Shiraz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rahimpour", 
        "givenName": "M. R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shiraz University", 
          "id": "https://www.grid.ac/institutes/grid.412573.6", 
          "name": [
            "Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, 71345, Shiraz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shariati", 
        "givenName": "A.", 
        "id": "sg:person.013445405403.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013445405403.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.fuproc.2011.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000841883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2509(02)00245-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002255820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2007.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002633211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aic.690210114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004324818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pecs.2011.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004445278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2010.03.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005477408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0040579512060188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005935677", 
          "https://doi.org/10.1134/s0040579512060188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0040579511050356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006145968", 
          "https://doi.org/10.1134/s0040579511050356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2509(01)00007-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007794743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuproc.2010.09.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010962699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2003.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011609541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2007.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012994711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2006.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021374617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2011.05.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023890710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aic.690350109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024613567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2509(81)85012-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027805011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2011.04.204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030750560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2011.12.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031884071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2005.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038870115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2008.05.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042370660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2010.09.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042603752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s004057951202011x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043135104", 
          "https://doi.org/10.1134/s004057951202011x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2012.01.124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044081533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2012.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046375436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2008.05.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050019214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2013.02.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052489473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2008.11.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053427491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef201303d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055478138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef2015233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055478231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef400026k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055479190"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-11", 
    "datePublishedReg": "2015-11-01", 
    "description": "In this research, application of chemical looping combustion (CLC) instead of furnace in a conventional steam reformer (CSR) assisted by Pd/Ag membranes for hydrogen production has been analyzed. Ni- and Fe-based oxygen carriers have been employed in CLC for carbon dioxide capture. A steady state one dimensional heterogeneous catalytic reaction model is applied to analyze the performance and applicability of proposed CLC-SRM configuration via different oxygen carriers. Simulation results show that for all types of used oxygen carriers combustion efficiency reaches to 1 in the fuel reactor (FR) part of CLC-SRM. In CLC-SRM, methane conversion increases from 26% in CSR to 33.7% and 30.87 with employing Ni- and Fe- based oxygen carriers respectively. In addition, hydrogen production increases from 3380 kmol h\u20131 in CSR to 4258 and 3948 kmol h\u20131 in CLC-SRM with employing Ni- and Fe-based oxygen carriers respectively. Increasing FR feed temperature in CLC-SRM via all types of oxygen carriers shows enhancement of methane conversion and hydrogen production in the SR side. By increasing FR feed temperature from 800\u20131000 K, hydrogen production can increases 41.36 and 33.08% by using Ni- and Fe- based oxygen carriers in comparison with CSR respectively.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0040579515060019", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136110", 
        "issn": [
          "0040-5795", 
          "1608-3431"
        ], 
        "name": "Theoretical Foundations of Chemical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "Hydrogen production in an environmental-friendly process by application of chemical looping combustion via Ni- and Fe-Based oxygen carriers", 
    "pagination": "884-900", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d81a3cf5fcc513f2f6e06e670210aeabbb4b689dcc909e88df25b7eabdae07b4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0040579515060019"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045367044"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0040579515060019", 
      "https://app.dimensions.ai/details/publication/pub.1045367044"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0040579515060019"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040579515060019'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040579515060019'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040579515060019'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040579515060019'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0040579515060019 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nf79e8890229c49bd978c38e74f941ced
4 schema:citation sg:pub.10.1134/s0040579511050356
5 sg:pub.10.1134/s004057951202011x
6 sg:pub.10.1134/s0040579512060188
7 https://doi.org/10.1002/aic.690210114
8 https://doi.org/10.1002/aic.690350109
9 https://doi.org/10.1016/0009-2509(81)85012-9
10 https://doi.org/10.1016/j.apenergy.2012.04.003
11 https://doi.org/10.1016/j.apenergy.2013.02.058
12 https://doi.org/10.1016/j.cej.2012.01.124
13 https://doi.org/10.1016/j.ces.2006.09.019
14 https://doi.org/10.1016/j.ces.2007.11.010
15 https://doi.org/10.1016/j.ces.2007.12.007
16 https://doi.org/10.1016/j.ces.2008.05.028
17 https://doi.org/10.1016/j.fuproc.2010.09.032
18 https://doi.org/10.1016/j.fuproc.2011.12.008
19 https://doi.org/10.1016/j.ijhydene.2003.09.010
20 https://doi.org/10.1016/j.ijhydene.2005.12.003
21 https://doi.org/10.1016/j.ijhydene.2008.05.039
22 https://doi.org/10.1016/j.ijhydene.2010.03.108
23 https://doi.org/10.1016/j.ijhydene.2011.04.204
24 https://doi.org/10.1016/j.ijhydene.2011.05.025
25 https://doi.org/10.1016/j.ijhydene.2011.12.037
26 https://doi.org/10.1016/j.jpowsour.2008.11.038
27 https://doi.org/10.1016/j.jpowsour.2010.09.101
28 https://doi.org/10.1016/j.pecs.2011.09.001
29 https://doi.org/10.1016/s0009-2509(01)00007-0
30 https://doi.org/10.1016/s0009-2509(02)00245-2
31 https://doi.org/10.1021/ef201303d
32 https://doi.org/10.1021/ef2015233
33 https://doi.org/10.1021/ef400026k
34 schema:datePublished 2015-11
35 schema:datePublishedReg 2015-11-01
36 schema:description In this research, application of chemical looping combustion (CLC) instead of furnace in a conventional steam reformer (CSR) assisted by Pd/Ag membranes for hydrogen production has been analyzed. Ni- and Fe-based oxygen carriers have been employed in CLC for carbon dioxide capture. A steady state one dimensional heterogeneous catalytic reaction model is applied to analyze the performance and applicability of proposed CLC-SRM configuration via different oxygen carriers. Simulation results show that for all types of used oxygen carriers combustion efficiency reaches to 1 in the fuel reactor (FR) part of CLC-SRM. In CLC-SRM, methane conversion increases from 26% in CSR to 33.7% and 30.87 with employing Ni- and Fe- based oxygen carriers respectively. In addition, hydrogen production increases from 3380 kmol h–1 in CSR to 4258 and 3948 kmol h–1 in CLC-SRM with employing Ni- and Fe-based oxygen carriers respectively. Increasing FR feed temperature in CLC-SRM via all types of oxygen carriers shows enhancement of methane conversion and hydrogen production in the SR side. By increasing FR feed temperature from 800–1000 K, hydrogen production can increases 41.36 and 33.08% by using Ni- and Fe- based oxygen carriers in comparison with CSR respectively.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N15075f0979a042c4b46cfd25eea99159
41 Nc565d3157081449b86f0b0ecb23122d7
42 sg:journal.1136110
43 schema:name Hydrogen production in an environmental-friendly process by application of chemical looping combustion via Ni- and Fe-Based oxygen carriers
44 schema:pagination 884-900
45 schema:productId N0eb8df5a65ed43648e9b84ec2ba53889
46 N53300711fce448279648536e3115ef0e
47 N717cd8833ee34f5796d8ea34f94de4e0
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045367044
49 https://doi.org/10.1134/s0040579515060019
50 schema:sdDatePublished 2019-04-11T01:59
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N222324c7a52844af92a4de3b1eac4c19
53 schema:url http://link.springer.com/10.1134/S0040579515060019
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0eb8df5a65ed43648e9b84ec2ba53889 schema:name readcube_id
58 schema:value d81a3cf5fcc513f2f6e06e670210aeabbb4b689dcc909e88df25b7eabdae07b4
59 rdf:type schema:PropertyValue
60 N11fef91a2e3340b99584580dac694889 rdf:first sg:person.013445405403.13
61 rdf:rest rdf:nil
62 N15075f0979a042c4b46cfd25eea99159 schema:volumeNumber 49
63 rdf:type schema:PublicationVolume
64 N178039755927443a86ee718f584b325d rdf:first N47ebf6b63b1f461b9364fd099863bed1
65 rdf:rest Nd176b06915a2489aa1692b02175b771e
66 N222324c7a52844af92a4de3b1eac4c19 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N47ebf6b63b1f461b9364fd099863bed1 schema:affiliation https://www.grid.ac/institutes/grid.444860.a
69 schema:familyName Farniei
70 schema:givenName M.
71 rdf:type schema:Person
72 N53300711fce448279648536e3115ef0e schema:name doi
73 schema:value 10.1134/s0040579515060019
74 rdf:type schema:PropertyValue
75 N717cd8833ee34f5796d8ea34f94de4e0 schema:name dimensions_id
76 schema:value pub.1045367044
77 rdf:type schema:PropertyValue
78 N9ec6ef46c17840fd9eb7d2c8f8a70b87 schema:affiliation https://www.grid.ac/institutes/grid.412573.6
79 schema:familyName Rahimpour
80 schema:givenName M. R.
81 rdf:type schema:Person
82 Nc565d3157081449b86f0b0ecb23122d7 schema:issueNumber 6
83 rdf:type schema:PublicationIssue
84 Nd176b06915a2489aa1692b02175b771e rdf:first N9ec6ef46c17840fd9eb7d2c8f8a70b87
85 rdf:rest N11fef91a2e3340b99584580dac694889
86 Nf79e8890229c49bd978c38e74f941ced rdf:first sg:person.011215463455.43
87 rdf:rest N178039755927443a86ee718f584b325d
88 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
89 schema:name Chemical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
92 schema:name Physical Chemistry (incl. Structural)
93 rdf:type schema:DefinedTerm
94 sg:journal.1136110 schema:issn 0040-5795
95 1608-3431
96 schema:name Theoretical Foundations of Chemical Engineering
97 rdf:type schema:Periodical
98 sg:person.011215463455.43 schema:affiliation https://www.grid.ac/institutes/grid.412491.b
99 schema:familyName Abbasi
100 schema:givenName M.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011215463455.43
102 rdf:type schema:Person
103 sg:person.013445405403.13 schema:affiliation https://www.grid.ac/institutes/grid.412573.6
104 schema:familyName Shariati
105 schema:givenName A.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013445405403.13
107 rdf:type schema:Person
108 sg:pub.10.1134/s0040579511050356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006145968
109 https://doi.org/10.1134/s0040579511050356
110 rdf:type schema:CreativeWork
111 sg:pub.10.1134/s004057951202011x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043135104
112 https://doi.org/10.1134/s004057951202011x
113 rdf:type schema:CreativeWork
114 sg:pub.10.1134/s0040579512060188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005935677
115 https://doi.org/10.1134/s0040579512060188
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/aic.690210114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004324818
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/aic.690350109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024613567
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0009-2509(81)85012-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027805011
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.apenergy.2012.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046375436
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.apenergy.2013.02.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052489473
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.cej.2012.01.124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044081533
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.ces.2006.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021374617
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.ces.2007.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002633211
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.ces.2007.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012994711
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.ces.2008.05.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050019214
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.fuproc.2010.09.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010962699
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.fuproc.2011.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000841883
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ijhydene.2003.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011609541
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.ijhydene.2005.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038870115
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.ijhydene.2008.05.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042370660
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.ijhydene.2010.03.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005477408
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ijhydene.2011.04.204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030750560
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ijhydene.2011.05.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023890710
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.ijhydene.2011.12.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031884071
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.jpowsour.2008.11.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053427491
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.jpowsour.2010.09.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042603752
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.pecs.2011.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004445278
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0009-2509(01)00007-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007794743
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s0009-2509(02)00245-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002255820
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/ef201303d schema:sameAs https://app.dimensions.ai/details/publication/pub.1055478138
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/ef2015233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055478231
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/ef400026k schema:sameAs https://app.dimensions.ai/details/publication/pub.1055479190
170 rdf:type schema:CreativeWork
171 https://www.grid.ac/institutes/grid.412491.b schema:alternateName Persian Gulf University
172 schema:name Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Persian Gulf University, 75169, Bushehr, Iran
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.412573.6 schema:alternateName Shiraz University
175 schema:name Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, 71345, Shiraz, Iran
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.444860.a schema:alternateName Shiraz University of Technology
178 schema:name Department of Chemical Engineering, Shiraz University of Technology, 71555-313, Shiraz, Iran
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...