Effect of the physicochemical characteristics of the disperse phase of slightly soluble compounds of nonferrous metals on the efficiency of ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-03

AUTHORS

V. A. Brodskiy, V. A. Kolesnikov, V. I. Il’in

ABSTRACT

The introduction of CO32−, PO43− and S2− ions as precipitants in solutions containing nonferrous ions led to a decrease of the average values of the hydrodynamic diameter of disperse phase particles dav by a factor of 1.5–2 relative to those in solutions containing the OH− precipitant. The electrokinetic ζ potential of the particles shifted toward higher negative values, −(25–55) mV, for metal phosphates and sulfides. The introduction of flocculants in the solutions led to enlargement of particles by a factor of 1.5–3 depending on the type of flocculant and the nature of the disperse phase. In the absence of flocculants, particles with sizes of 30–70 μm and a charge of up to −15 mV were extracted most effectively. Particles with a high negative charge of the surface were not liable to effective coagulation; this negatively affected the electroflotation extraction. In this case, the use of a cationic type flocculant was most effective. In the presence of a flocculant of this type, the ζ potential shifted toward higher positive values, increasing the efficiency of electroflotation by a factor of 1.5–2; the degree of extraction of the disperse phase α reached 98%. More... »

PAGES

138-144

References to SciGraph publications

  • 2014-03. Modeling of flotation process in dispersed systems in THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING
  • 2010-12. Kinetic characteristics of concentration and isolation of metal impurities from solutions and industrial wastewater by ion flotation in THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING
  • 2009-06. Mathematical model of particle-bubble flotation complex motion in vibration flotation in THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0040579515020037

    DOI

    http://dx.doi.org/10.1134/s0040579515020037

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1036426799


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "D. Mendeleyev University of Chemical Technology of Russia", 
              "id": "https://www.grid.ac/institutes/grid.39572.3a", 
              "name": [
                "Mendeleev University of Chemical Technology of Russia, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brodskiy", 
            "givenName": "V. A.", 
            "id": "sg:person.012335326073.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012335326073.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "D. Mendeleyev University of Chemical Technology of Russia", 
              "id": "https://www.grid.ac/institutes/grid.39572.3a", 
              "name": [
                "Mendeleev University of Chemical Technology of Russia, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kolesnikov", 
            "givenName": "V. A.", 
            "id": "sg:person.011667347513.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011667347513.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "D. Mendeleyev University of Chemical Technology of Russia", 
              "id": "https://www.grid.ac/institutes/grid.39572.3a", 
              "name": [
                "Mendeleev University of Chemical Technology of Russia, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Il\u2019in", 
            "givenName": "V. I.", 
            "id": "sg:person.015374550074.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015374550074.56"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.desal.2005.01.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014387392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0040579510060047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028799160", 
              "https://doi.org/10.1134/s0040579510060047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0040579514020031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044294818", 
              "https://doi.org/10.1134/s0040579514020031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0040579509030129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044345472", 
              "https://doi.org/10.1134/s0040579509030129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01496395.2010.508065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044379520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.desal.2007.10.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049882926"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-03", 
        "datePublishedReg": "2015-03-01", 
        "description": "The introduction of CO32\u2212, PO43\u2212 and S2\u2212 ions as precipitants in solutions containing nonferrous ions led to a decrease of the average values of the hydrodynamic diameter of disperse phase particles dav by a factor of 1.5\u20132 relative to those in solutions containing the OH\u2212 precipitant. The electrokinetic \u03b6 potential of the particles shifted toward higher negative values, \u2212(25\u201355) mV, for metal phosphates and sulfides. The introduction of flocculants in the solutions led to enlargement of particles by a factor of 1.5\u20133 depending on the type of flocculant and the nature of the disperse phase. In the absence of flocculants, particles with sizes of 30\u201370 \u03bcm and a charge of up to \u221215 mV were extracted most effectively. Particles with a high negative charge of the surface were not liable to effective coagulation; this negatively affected the electroflotation extraction. In this case, the use of a cationic type flocculant was most effective. In the presence of a flocculant of this type, the \u03b6 potential shifted toward higher positive values, increasing the efficiency of electroflotation by a factor of 1.5\u20132; the degree of extraction of the disperse phase \u03b1 reached 98%.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s0040579515020037", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136110", 
            "issn": [
              "0040-5795", 
              "1608-3431"
            ], 
            "name": "Theoretical Foundations of Chemical Engineering", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "49"
          }
        ], 
        "name": "Effect of the physicochemical characteristics of the disperse phase of slightly soluble compounds of nonferrous metals on the efficiency of their electroflotation extraction from aqueous solutions", 
        "pagination": "138-144", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ad862f5b7b6c133e4bfd48ee3045aa51cc4cb7b65cc7ba6146c127b091dc9206"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0040579515020037"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1036426799"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0040579515020037", 
          "https://app.dimensions.ai/details/publication/pub.1036426799"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000506.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134/S0040579515020037"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040579515020037'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040579515020037'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040579515020037'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040579515020037'


     

    This table displays all metadata directly associated to this object as RDF triples.

    96 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0040579515020037 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N31f23448904141b2adf11144ebe3bc13
    4 schema:citation sg:pub.10.1134/s0040579509030129
    5 sg:pub.10.1134/s0040579510060047
    6 sg:pub.10.1134/s0040579514020031
    7 https://doi.org/10.1016/j.desal.2005.01.011
    8 https://doi.org/10.1016/j.desal.2007.10.013
    9 https://doi.org/10.1080/01496395.2010.508065
    10 schema:datePublished 2015-03
    11 schema:datePublishedReg 2015-03-01
    12 schema:description The introduction of CO32−, PO43− and S2− ions as precipitants in solutions containing nonferrous ions led to a decrease of the average values of the hydrodynamic diameter of disperse phase particles dav by a factor of 1.5–2 relative to those in solutions containing the OH− precipitant. The electrokinetic ζ potential of the particles shifted toward higher negative values, −(25–55) mV, for metal phosphates and sulfides. The introduction of flocculants in the solutions led to enlargement of particles by a factor of 1.5–3 depending on the type of flocculant and the nature of the disperse phase. In the absence of flocculants, particles with sizes of 30–70 μm and a charge of up to −15 mV were extracted most effectively. Particles with a high negative charge of the surface were not liable to effective coagulation; this negatively affected the electroflotation extraction. In this case, the use of a cationic type flocculant was most effective. In the presence of a flocculant of this type, the ζ potential shifted toward higher positive values, increasing the efficiency of electroflotation by a factor of 1.5–2; the degree of extraction of the disperse phase α reached 98%.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N7522e5db3f054c23b0441afa33b923e3
    17 Ncbfb30c50f154bcbabdc34e12fecca4a
    18 sg:journal.1136110
    19 schema:name Effect of the physicochemical characteristics of the disperse phase of slightly soluble compounds of nonferrous metals on the efficiency of their electroflotation extraction from aqueous solutions
    20 schema:pagination 138-144
    21 schema:productId Nb7e059938df74d7a8af97c46dc7a2667
    22 Ne937471d683f4eb0aa93033c93d4efbd
    23 Nf6d88c066c894a62b2d29272c1b19de6
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036426799
    25 https://doi.org/10.1134/s0040579515020037
    26 schema:sdDatePublished 2019-04-10T17:30
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher N459566ab68634ff194075933cd91f209
    29 schema:url http://link.springer.com/10.1134/S0040579515020037
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N31f23448904141b2adf11144ebe3bc13 rdf:first sg:person.012335326073.19
    34 rdf:rest N9a1a4d57b79e4bb6ae7c686c79aad227
    35 N438e191f4b5b4498adfccebf9210ee2c rdf:first sg:person.015374550074.56
    36 rdf:rest rdf:nil
    37 N459566ab68634ff194075933cd91f209 schema:name Springer Nature - SN SciGraph project
    38 rdf:type schema:Organization
    39 N7522e5db3f054c23b0441afa33b923e3 schema:issueNumber 2
    40 rdf:type schema:PublicationIssue
    41 N9a1a4d57b79e4bb6ae7c686c79aad227 rdf:first sg:person.011667347513.40
    42 rdf:rest N438e191f4b5b4498adfccebf9210ee2c
    43 Nb7e059938df74d7a8af97c46dc7a2667 schema:name readcube_id
    44 schema:value ad862f5b7b6c133e4bfd48ee3045aa51cc4cb7b65cc7ba6146c127b091dc9206
    45 rdf:type schema:PropertyValue
    46 Ncbfb30c50f154bcbabdc34e12fecca4a schema:volumeNumber 49
    47 rdf:type schema:PublicationVolume
    48 Ne937471d683f4eb0aa93033c93d4efbd schema:name doi
    49 schema:value 10.1134/s0040579515020037
    50 rdf:type schema:PropertyValue
    51 Nf6d88c066c894a62b2d29272c1b19de6 schema:name dimensions_id
    52 schema:value pub.1036426799
    53 rdf:type schema:PropertyValue
    54 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Chemical Sciences
    56 rdf:type schema:DefinedTerm
    57 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Physical Chemistry (incl. Structural)
    59 rdf:type schema:DefinedTerm
    60 sg:journal.1136110 schema:issn 0040-5795
    61 1608-3431
    62 schema:name Theoretical Foundations of Chemical Engineering
    63 rdf:type schema:Periodical
    64 sg:person.011667347513.40 schema:affiliation https://www.grid.ac/institutes/grid.39572.3a
    65 schema:familyName Kolesnikov
    66 schema:givenName V. A.
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011667347513.40
    68 rdf:type schema:Person
    69 sg:person.012335326073.19 schema:affiliation https://www.grid.ac/institutes/grid.39572.3a
    70 schema:familyName Brodskiy
    71 schema:givenName V. A.
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012335326073.19
    73 rdf:type schema:Person
    74 sg:person.015374550074.56 schema:affiliation https://www.grid.ac/institutes/grid.39572.3a
    75 schema:familyName Il’in
    76 schema:givenName V. I.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015374550074.56
    78 rdf:type schema:Person
    79 sg:pub.10.1134/s0040579509030129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044345472
    80 https://doi.org/10.1134/s0040579509030129
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1134/s0040579510060047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028799160
    83 https://doi.org/10.1134/s0040579510060047
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1134/s0040579514020031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044294818
    86 https://doi.org/10.1134/s0040579514020031
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1016/j.desal.2005.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014387392
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1016/j.desal.2007.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049882926
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1080/01496395.2010.508065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044379520
    93 rdf:type schema:CreativeWork
    94 https://www.grid.ac/institutes/grid.39572.3a schema:alternateName D. Mendeleyev University of Chemical Technology of Russia
    95 schema:name Mendeleev University of Chemical Technology of Russia, Moscow, Russia
    96 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...