Mathematical modeling of desublimation of carbon dioxide from flue gases of heat power systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-01

AUTHORS

V. A. Naletov, L. S. Gordeev, M. B. Glebov, A. Yu. Naletov

ABSTRACT

A quasi-nonstationary mathematical model of the low-temperature desublimation of carbon dioxide from purified flue gases of heat power systems has been developed. Process calculation results at parameters that correspond to its integration into the power trigeneration module based on a combination of Rankine and refrigeration cycles are given. Optimal operation estimates were obtained, which could be used to select an optimal engineering solution (changing the diameter of the heat exchanger tubes or the use of parallel units). More... »

PAGES

27-33

References to SciGraph publications

  • 2011-10-13. Information-thermodynamic principle of the organization of chemical engineering systems in THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0040579514010072

    DOI

    http://dx.doi.org/10.1134/s0040579514010072

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031281038


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Mendeleev Russian University of Chemical Technology, Miusskaya pl. 9, 125047, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.39572.3a", 
              "name": [
                "Mendeleev Russian University of Chemical Technology, Miusskaya pl. 9, 125047, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Naletov", 
            "givenName": "V. A.", 
            "id": "sg:person.015576745360.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015576745360.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mendeleev Russian University of Chemical Technology, Miusskaya pl. 9, 125047, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.39572.3a", 
              "name": [
                "Mendeleev Russian University of Chemical Technology, Miusskaya pl. 9, 125047, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gordeev", 
            "givenName": "L. S.", 
            "id": "sg:person.014065653225.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065653225.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mendeleev Russian University of Chemical Technology, Miusskaya pl. 9, 125047, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.39572.3a", 
              "name": [
                "Mendeleev Russian University of Chemical Technology, Miusskaya pl. 9, 125047, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glebov", 
            "givenName": "M. B.", 
            "id": "sg:person.016025443041.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016025443041.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mendeleev Russian University of Chemical Technology, Miusskaya pl. 9, 125047, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.39572.3a", 
              "name": [
                "Mendeleev Russian University of Chemical Technology, Miusskaya pl. 9, 125047, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Naletov", 
            "givenName": "A. Yu.", 
            "id": "sg:person.014507624441.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014507624441.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s0040579511050289", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044456607", 
              "https://doi.org/10.1134/s0040579511050289"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-01", 
        "datePublishedReg": "2014-01-01", 
        "description": "A quasi-nonstationary mathematical model of the low-temperature desublimation of carbon dioxide from purified flue gases of heat power systems has been developed. Process calculation results at parameters that correspond to its integration into the power trigeneration module based on a combination of Rankine and refrigeration cycles are given. Optimal operation estimates were obtained, which could be used to select an optimal engineering solution (changing the diameter of the heat exchanger tubes or the use of parallel units).", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s0040579514010072", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136110", 
            "issn": [
              "0040-5795", 
              "1608-3431"
            ], 
            "name": "Theoretical Foundations of Chemical Engineering", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "48"
          }
        ], 
        "keywords": [
          "heat power systems", 
          "flue gases", 
          "power system", 
          "optimal engineering solutions", 
          "mathematical model", 
          "mathematical modeling", 
          "refrigeration cycle", 
          "carbon dioxide", 
          "engineering solutions", 
          "process calculations", 
          "desublimation", 
          "gases", 
          "Rankine", 
          "dioxide", 
          "modeling", 
          "solution", 
          "system", 
          "estimates", 
          "model", 
          "parameters", 
          "module", 
          "integration", 
          "calculations", 
          "cycle", 
          "combination", 
          "quasi-nonstationary mathematical model", 
          "low-temperature desublimation", 
          "power trigeneration module", 
          "trigeneration module", 
          "combination of Rankine", 
          "Optimal operation estimates", 
          "operation estimates"
        ], 
        "name": "Mathematical modeling of desublimation of carbon dioxide from flue gases of heat power systems", 
        "pagination": "27-33", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031281038"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0040579514010072"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0040579514010072", 
          "https://app.dimensions.ai/details/publication/pub.1031281038"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_628.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s0040579514010072"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040579514010072'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040579514010072'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040579514010072'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040579514010072'


     

    This table displays all metadata directly associated to this object as RDF triples.

    115 TRIPLES      22 PREDICATES      59 URIs      50 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0040579514010072 schema:about anzsrc-for:09
    2 anzsrc-for:0904
    3 schema:author N902b8f3aca184e90b194f02d9379005c
    4 schema:citation sg:pub.10.1134/s0040579511050289
    5 schema:datePublished 2014-01
    6 schema:datePublishedReg 2014-01-01
    7 schema:description A quasi-nonstationary mathematical model of the low-temperature desublimation of carbon dioxide from purified flue gases of heat power systems has been developed. Process calculation results at parameters that correspond to its integration into the power trigeneration module based on a combination of Rankine and refrigeration cycles are given. Optimal operation estimates were obtained, which could be used to select an optimal engineering solution (changing the diameter of the heat exchanger tubes or the use of parallel units).
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N1214445b9c5c46d0a0c44ae21ed44064
    12 Nafd58f5804574c76a5483e206fdf526d
    13 sg:journal.1136110
    14 schema:keywords Optimal operation estimates
    15 Rankine
    16 calculations
    17 carbon dioxide
    18 combination
    19 combination of Rankine
    20 cycle
    21 desublimation
    22 dioxide
    23 engineering solutions
    24 estimates
    25 flue gases
    26 gases
    27 heat power systems
    28 integration
    29 low-temperature desublimation
    30 mathematical model
    31 mathematical modeling
    32 model
    33 modeling
    34 module
    35 operation estimates
    36 optimal engineering solutions
    37 parameters
    38 power system
    39 power trigeneration module
    40 process calculations
    41 quasi-nonstationary mathematical model
    42 refrigeration cycle
    43 solution
    44 system
    45 trigeneration module
    46 schema:name Mathematical modeling of desublimation of carbon dioxide from flue gases of heat power systems
    47 schema:pagination 27-33
    48 schema:productId N3265dd7b3af14e6b99343e8b651914da
    49 N8d7e1f390983449997851dbbe5a3ba03
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031281038
    51 https://doi.org/10.1134/s0040579514010072
    52 schema:sdDatePublished 2022-01-01T18:33
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher N566a2e50c3b0474ebcf53fb74b2f5b81
    55 schema:url https://doi.org/10.1134/s0040579514010072
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N1214445b9c5c46d0a0c44ae21ed44064 schema:volumeNumber 48
    60 rdf:type schema:PublicationVolume
    61 N2a805c6c70494c3c85fa7e1623903d12 rdf:first sg:person.014065653225.63
    62 rdf:rest Nd68852f495764e20a5eb751e8f63824d
    63 N3265dd7b3af14e6b99343e8b651914da schema:name dimensions_id
    64 schema:value pub.1031281038
    65 rdf:type schema:PropertyValue
    66 N566a2e50c3b0474ebcf53fb74b2f5b81 schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 N89b3f5e9146647de8f3fb9a34491764d rdf:first sg:person.014507624441.79
    69 rdf:rest rdf:nil
    70 N8d7e1f390983449997851dbbe5a3ba03 schema:name doi
    71 schema:value 10.1134/s0040579514010072
    72 rdf:type schema:PropertyValue
    73 N902b8f3aca184e90b194f02d9379005c rdf:first sg:person.015576745360.67
    74 rdf:rest N2a805c6c70494c3c85fa7e1623903d12
    75 Nafd58f5804574c76a5483e206fdf526d schema:issueNumber 1
    76 rdf:type schema:PublicationIssue
    77 Nd68852f495764e20a5eb751e8f63824d rdf:first sg:person.016025443041.98
    78 rdf:rest N89b3f5e9146647de8f3fb9a34491764d
    79 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Engineering
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Chemical Engineering
    84 rdf:type schema:DefinedTerm
    85 sg:journal.1136110 schema:issn 0040-5795
    86 1608-3431
    87 schema:name Theoretical Foundations of Chemical Engineering
    88 schema:publisher Pleiades Publishing
    89 rdf:type schema:Periodical
    90 sg:person.014065653225.63 schema:affiliation grid-institutes:grid.39572.3a
    91 schema:familyName Gordeev
    92 schema:givenName L. S.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065653225.63
    94 rdf:type schema:Person
    95 sg:person.014507624441.79 schema:affiliation grid-institutes:grid.39572.3a
    96 schema:familyName Naletov
    97 schema:givenName A. Yu.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014507624441.79
    99 rdf:type schema:Person
    100 sg:person.015576745360.67 schema:affiliation grid-institutes:grid.39572.3a
    101 schema:familyName Naletov
    102 schema:givenName V. A.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015576745360.67
    104 rdf:type schema:Person
    105 sg:person.016025443041.98 schema:affiliation grid-institutes:grid.39572.3a
    106 schema:familyName Glebov
    107 schema:givenName M. B.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016025443041.98
    109 rdf:type schema:Person
    110 sg:pub.10.1134/s0040579511050289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044456607
    111 https://doi.org/10.1134/s0040579511050289
    112 rdf:type schema:CreativeWork
    113 grid-institutes:grid.39572.3a schema:alternateName Mendeleev Russian University of Chemical Technology, Miusskaya pl. 9, 125047, Moscow, Russia
    114 schema:name Mendeleev Russian University of Chemical Technology, Miusskaya pl. 9, 125047, Moscow, Russia
    115 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...